亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Java數據結構中如何進行并查集的實現

發布時間:2022-01-24 09:20:42 來源:億速云 閱讀:129 作者:kk 欄目:開發技術

這篇文章跟大家分析一下“Java數據結構中如何進行并查集的實現”。內容詳細易懂,對“Java數據結構中如何進行并查集的實現”感興趣的朋友可以跟著小編的思路慢慢深入來閱讀一下,希望閱讀后能夠對大家有所幫助。下面跟著小編一起深入學習“Java數據結構中如何進行并查集的實現”的知識吧。

并查集就是將原本不在一個集合里面的內容合并到一個集合中。

在實際的場景中用處不多。

除了出現在你需要同時去幾個集合里面查詢,避免出現查詢很多次,從而放在一起查詢的情況。

下面簡單實現一個例子,我們來舉例說明一下什么是并查集,以及究竟并查集解決了什么問題。

代碼解析

package com.chaojilaji.book.andcheck;

public class AndCheckSet {


    public static Integer getFather(int[] father, int u) {
        if (father[u] != u) {
            father[u] = getFather(father, father[u]);
        }
        return father[u];
    }

    public static void join(int[] father,int x, int y) {
        int fx = getFather(father,x);
        int fy = getFather(father,y);
        if (fx != fy){
            father[fx] = fy;
        }
    }

    public static void main(String[] args) {
        int n = 10;
        int[] a = new int[n];
        for (int i = 0;i<n;i++){
            a[i] = i; // 初始化定義一百個集合
        }
        for (int i=0;i<n;i++){
            System.out.println(i+" "+getFather(a, i)); // 對于每個集合,父節點都是自己
        }
    }
}

首先,我們定義了兩個函數,分別為getFather和join,分別表示獲取u所在集合的根以及合并兩個集合。

先來看看getFather方法

public static Integer getFather(int[] father, int u) {
    if (father[u] != u) {
        father[u] = getFather(father, father[u]);
    }
    return father[u];
}

是找出值u所在集合的根節點是多少。一般來說,father[u]如果等于u本身,那么說明u所在節點就是根節點,而這個算法是直到相等才退出,也就是說,對于從u到根節點的每個節點的father都被直接置為根節點,同時返回了當前節點的根節點。

然后來看看join方法

public static void join(int[] father,int x, int y) {
    int fx = getFather(father,x);
    int fy = getFather(father,y);
    if (fx != fy){
        father[fx] = fy;
    }
}

分別找出x和y兩個節點所在集合的根節點,如果根節點不一樣,則將其中一個節點的father節點置為另一個節點即可,這樣就合并成了一個集合。

代碼應用

public static void main(String[] args) {
    int n = 10;
    int[] a = new int[n];
    for (int i = 0;i<n;i++){
        a[i] = i; // 初始化定義n個集合
    }
    for (int i=0;i<n;i++){
        System.out.println(i+" "+getFather(a, i)); // 對于每個集合,父節點都是自己
    }
    System.out.println("-------------------------");
    join(a,0,1); // 合并 0 和 1
    for (int i=0;i<n;i++){
        System.out.println(i+" "+getFather(a, i));
    }
    // 由于合并了0和1,所以集合變成了9個,節點0和節點1的根都是節點1
    System.out.println("-------------------------");
    join(a,2,3); // 合并 2 和 3
    for (int i=0;i<n;i++){
        System.out.println(i+" "+getFather(a, i));
    }
    // 由于合并了2和3,所以集合變成8個,節點2和節點3的根都是節點3
    System.out.println("-------------------------");
    join(a,1,3); // 合并 1 和 3
    for (int i=0;i<n;i++){
        System.out.println(i+" "+getFather(a, i));
    }
    // 由于合并了1和3,所以集合變成7個,節點0,1,2,3的根都是節點3
}

首先,我們定義了n個集合,這n個集合的值是0~n-1,然后此時他們的父節點均等于他們本身,所以這就是n個獨立的集合,結果如下

0的父節點為 0 1的父節點為 1 2的父節點為 2 3的父節點為 3 4的父節點為 4 5的父節點為 5 6的父節點為 6 7的父節點為 7 8的父節點為 8 9的父節點為 9

然后調用 join(a,0,1)合并0集合和1集合,再輸出節點父集合情況為

0的父節點為 1 1的父節點為 1 2的父節點為 2 3的父節點為 3 4的父節點為 4 5的父節點為 5 6的父節點為 6 7的父節點為 7 8的父節點為 8 9的父節點為 9

可以看見,由于合并了0和1,所以集合變成了9個,節點0和節點1的根都是節點1。
然后調用 join(a,2,3) 合并2集合和3集合,輸出節點父集合情況為

0的父節點為 1 1的父節點為 1 2的父節點為 3 3的父節點為 3 4的父節點為 4 5的父節點為 5 6的父節點為 6 7的父節點為 7 8的父節點為 8 9的父節點為 9

可以看見,由于合并了2和3,所以集合變成8個,節點2和節點3的根都是節點3。
最后,我們再調用join(a,1,3) 合并1集合和3集合,輸出節點父集合情況為

0的父節點為 3 1的父節點為 3 2的父節點為 3 3的父節點為 3 4的父節點為 4 5的父節點為 5 6的父節點為 6 7的父節點為 7 8的父節點為 8 9的父節點為 9

可以看出來,由于合并了1和3,所以集合變成7個,節點0,1,2,3的根都是節點3。

實際應用

代碼的層面來講,并查集很好實現。但是我們卻也可以發現,其應用場景似乎非常局限。
首先,我們需要定義出一個father[x] = x的數組,然后我們再去合并。似乎很難想到應用場景。

那么我們可以想象一個場景,現在有個網絡拓撲圖,里面有n和網絡設施設備,然后又給了你這n個設施設備之間的連接關系,問你一共有多少個局部聯通網。
對于這個問題,我們就可以首先定義每個設備自己跟自己相連,然后每出現一條邊,就對這兩個設備采取join操作。最終我們在遍歷完所有的節點,得到多少個不同的father,即表示有多少個不同的局部聯通網。

這樣的問題還可以延伸到我們的人際交友圈,首先每個人都是單獨的集合,在不斷認識人的過程中,產生連通性。最終讓你確認一共有多少個不互通的人際圈。

所以你會發現,這本質上就是求圖論中連通塊的個數。

Java可以用來干什么

Java主要應用于:1. web開發;2. Android開發;3. 客戶端開發;4. 網頁開發;5. 企業級應用開發;6. Java大數據開發;7.游戲開發等。

關于Java數據結構中如何進行并查集的實現就分享到這里啦,希望上述內容能夠讓大家有所提升。如果想要學習更多知識,請大家多多留意小編的更新。謝謝大家關注一下億速云網站!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

井陉县| 龙海市| 剑川县| 东辽县| 木兰县| 闻喜县| 玛沁县| 永胜县| 吉林省| 玉林市| 昆山市| 中方县| 桑日县| 扎鲁特旗| 资源县| 抚州市| 凯里市| 沭阳县| 南漳县| 赫章县| 澄江县| 措美县| 南皮县| 高邑县| 泸水县| 隆子县| 屏山县| 莱阳市| 克山县| 甘谷县| 镇雄县| 宿迁市| 凉山| 安化县| 奈曼旗| 柳河县| 泸州市| 鄂尔多斯市| 陵川县| 青岛市| 社会|