亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

python+gdal+遙感圖像拼接的示例分析

發布時間:2021-06-16 15:12:05 來源:億速云 閱讀:439 作者:小新 欄目:開發技術

這篇文章主要介紹python+gdal+遙感圖像拼接的示例分析,文中介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們一定要看完!

關于遙感圖像的鑲嵌,主要分為6大步驟:

step1:

1)對于每一幅圖像,計算其行與列;

2)獲取左上角X,Y

3)獲取像素寬和像素高

4)計算max X 和 min Y,切記像素高是負值

maxX1 = minX1 + (cols1 * pixelWidth)
minY1 = maxY1 + (rows1 * pixelHeight)

step2 :計算輸出圖像的min X ,max X,min Y,max Y

minX = min(minX1, minX2, …)
maxX = max(maxX1, maxX2, …)

y坐標同理

step3:計算輸出圖像的行與列

cols = int((maxX – minX) / pixelWidth)
rows = int((maxY – minY) / abs(pixelHeight)

step 4:創建一個輸出圖像

driver.create()

step 5:

1)計算每幅圖像左上角坐標在新圖像的偏移值

2)依次讀入每幅圖像的數據并利用1)計算的偏移值將其寫入新圖像中

step6 :對于輸出圖像

1)刷新磁盤并計算統計值

2)設置輸出圖像的幾何和投影信息

3)建立金字塔

下面附上筆者的代碼:

#mosica 兩張圖像
import os, sys, gdal
from gdalconst import *
os.chdir('c:/temp/****')#改變文件夾路徑
# 注冊gdal(required)
gdal.AllRegister()

# 讀入第一幅圖像
ds1 = gdal.Open('**.img')
band1 = ds1.GetRasterBand(1)
rows1 = ds1.RasterYSize
cols1 = ds1.RasterXSize

# 獲取圖像角點坐標
transform1 = ds1.GetGeoTransform()
minX1 = transform1[0]
maxY1 = transform1[3]
pixelWidth2 = transform1[1]
pixelHeight1 = transform1[5]#是負值(important)
maxX1 = minX1 + (cols1 * pixelWidth2)
minY1 = maxY1 + (rows1 * pixelHeight1)

# 讀入第二幅圖像
ds2 = gdal.Open('**.img')
band2 = ds2.GetRasterBand(1)
rows2 = ds2.RasterYSize
cols2 = ds2.RasterXSize

# 獲取圖像角點坐標
transform2 = ds2.GetGeoTransform()
minX2 = transform2[0]
maxY2 = transform2[3]
pixelWidth3 = transform2[1]
pixelHeight2 = transform2[5]
maxX2 = minX2 + (cols2 * pixelWidth3)
minY2 = maxY2 + (rows2 * pixelHeight2)

# 獲取輸出圖像坐標
minX = min(minX1, minX2)
maxX = max(maxX1, maxX2)
minY = min(minY1, minY2)
maxY = max(maxY1, maxY2)

#獲取輸出圖像的行與列
cols = int((maxX - minX) / pixelWidth2)
rows = int((maxY - minY) / abs(pixelHeight1))

# 計算圖1左上角的偏移值(在輸出圖像中)
xOffset1 = int((minX1 - minX) / pixelWidth2)
yOffset1 = int((maxY1 - maxY) / pixelHeight1)

# 計算圖2左上角的偏移值(在輸出圖像中)
xOffset2 = int((minX2 - minX) / pixelWidth2)
yOffset2 = int((maxY2 - maxY) / pixelHeight1)

# 創建一個輸出圖像
driver = ds1.GetDriver()
dsOut = driver.Create('mosiac.img', cols, rows, 1, band1.DataType)#1是bands,默認
bandOut = dsOut.GetRasterBand(1)

# 讀圖1的數據并將其寫到輸出圖像中
data1 = band1.ReadAsArray(0, 0, cols1, rows1)
bandOut.WriteArray(data1, xOffset1, yOffset1)

#讀圖2的數據并將其寫到輸出圖像中
data2 = band2.ReadAsArray(0, 0, cols2, rows2)
bandOut.WriteArray(data2, xOffset2, yOffset2)
''' 寫圖像步驟'''
# 統計數據
bandOut.FlushCache()#刷新磁盤
stats = bandOut.GetStatistics(0, 1)#第一個參數是1的話,是基于金字塔統計,第二個
#第二個參數是1的話:整幅圖像重度,不需要統計
# 設置輸出圖像的幾何信息和投影信息
geotransform = [minX, pixelWidth2, 0, maxY, 0, pixelHeight1]
dsOut.SetGeoTransform(geotransform)
dsOut.SetProjection(ds1.GetProjection())

# 建立輸出圖像的金字塔
gdal.SetConfigOption('HFA_USE_RRD', 'YES')
dsOut.BuildOverviews(overviewlist=[2,4,8,16])#4層

補充知識:運用Python的第三方庫:GDAL進行遙感數據的讀寫

0 背景及配置環境

0.1 背景

GDAL(Geospatial Data Abstraction Library)是一個在X/MIT許可協議下的開源柵格空間數據轉換庫。它利用抽象數據模型來表達所支持的各種文件格式。它還有一系列命令行工具來進行數據轉換和處理。

這個開源柵格空間數據轉換庫擁有許多和其他語言的接口,對于python,他有對應的第三方包GDAL,下載安裝已在上篇文章中提到。

目的: 可以使用Python的第三方包:GDAL進行遙感數據的讀寫,方便批處理。

0.2 配置環境

電腦系統: win7x64
Python版本: 3.6.4
GDAL版本: 2.3.2

1 讀

1.1 TIFF格式

標簽圖像文件格式(Tag Image File Format,簡寫為TIFF)是一種靈活的位圖格式,主要用來存儲包括照片和藝術圖在內的圖像。它最初由Aldus公司與微軟公司一起為PostScript打印開發。TIFF與JPEG和PNG一起成為流行的高位彩色圖像格式。

TIFF文件以.tif為擴展名。

 def tif_read(tifpath, bandnum):
  """
  Use GDAL to read data and transform them into arrays.
  :param tifpath:tif文件的路徑
  :param bandnum:需要讀取的波段
  :return:該波段的數據,narray格式。len(narray)是行數,len(narray[0])列數
  """
  image = gdal.Open(tifpath) # 打開該圖像
  if image == None:
   print(tifpath + "該tif不能打開!")
   return
  lie = image.RasterXSize # 柵格矩陣的列數
  hang = image.RasterYSize # 柵格矩陣的行數
  im_bands = image.RasterCount # 波段數
  im_proj = image.GetProjection() # 獲取投影信息
  im_geotrans = image.GetGeoTransform() # 仿射矩陣
  print('該tif:{}個行,{}個列,{}層波段, 取出第{}層.'.format(hang, lie, im_bands, bandnum))
  band = image.GetRasterBand(bandnum) # Get the information of band num.
  band_array = band.ReadAsArray(0,0,lie,hang) # Getting data from zeroth rows and 0 columns
  # band_df = pd.DataFrame(band_array)
  del image # 減少冗余
  return band_array, im_proj, im_geotrans

2 寫

2.1 TIFF格式

TIFF格式的數據格式有:Byete、int16、uint16、int32、uint32、float32、float64等7余種。

首先,要判斷數據的格式,才能按需求寫出。

def tif_write(self, filename, im_data, im_proj, im_geotrans):
  """
  gdal數據類型包括
  gdal.GDT_Byte,
  gdal.GDT_UInt16, gdal.GDT_Int16, gdal.GDT_UInt32, gdal.GDT_Int32,
  gdal.GDT_Float32, gdal.GDT_Float64
  :param filename: 存出文件名
  :param im_data: 輸入數據
  :param im_proj: 投影信息
  :param im_geotrans: 放射變換信息
  :return: 0 
  """
  if 'int8' in im_data.dtype.name: # 判斷柵格數據的數據類型
   datatype = gdal.GDT_Byte
  elif 'int16' in im_data.dtype.name:
   datatype = gdal.GDT_UInt16
  else:
   datatype = gdal.GDT_Float32
  # 判讀數組維數
  if len(im_data.shape) == 3:
   im_bands, im_height, im_width = im_data.shape
  else:
   im_bands, (im_height, im_width) = 1,im_data.shape # 多維或1.2維
  #創建文件
  driver = gdal.GetDriverByName("GTiff")   #數據類型必須有,因為要計算需要多大內存空間
  dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)
  dataset.SetGeoTransform(im_geotrans)    #寫入仿射變換參數
  dataset.SetProjection(im_proj)     #寫入投影
  if im_bands == 1:
   dataset.GetRasterBand(1).WriteArray(im_data) #寫入數組數據
  else:
   for i in range(im_bands):
    dataset.GetRasterBand(i+1).WriteArray(im_data[i])
  del dataset

3 展示

3.1 TIFF格式

# 這個展示的效果并不是太好,當做示意圖用
 def tif_display(self,im_data):
  """
  :param im_data: 影像數據,narray
  :return: 展出影像
  """
  # plt.imshow(im_data,'gray') # 必須規定為顯示的為什么圖像
  plt.imshow(im_data) # 必須規定為顯示的為什么圖像
  plt.xticks([]), plt.yticks([]) # 隱藏坐標線
  plt.show() # 顯示出來,不要也可以,但是一般都要了

以上是“python+gdal+遙感圖像拼接的示例分析”這篇文章的所有內容,感謝各位的閱讀!希望分享的內容對大家有幫助,更多相關知識,歡迎關注億速云行業資訊頻道!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

松溪县| 英吉沙县| 华宁县| 佛学| 阳泉市| 南郑县| 玛多县| 乳源| 中江县| 平湖市| 赤城县| 洛宁县| 密山市| 田阳县| 武乡县| 花垣县| 城步| 南昌市| 江孜县| 深州市| 永登县| 常山县| 阳春市| 泸溪县| 仁化县| 宁津县| 珠海市| 瑞昌市| 上杭县| 海城市| 专栏| 台东县| 富顺县| 红安县| 虹口区| 额济纳旗| 合水县| 柘城县| 都安| 二连浩特市| 内乡县|