亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Prometheus 入門

發布時間:2020-06-25 20:47:48 來源:網絡 閱讀:538 作者:程序員果果 欄目:編程語言

文章首發于公眾號《程序員果果》
地址 : https://mp.weixin.qq.com/s/BjZyNcWEgflJMnjfceiluw

簡介

Prometheus 是一套開源的系統監控報警框架。它啟發于 Google 的 borgmon 監控系統,由工作在 SoundCloud 的 google 前員工在 2012 年創建,作為社區開源項目進行開發,并于 2015 年正式發布。

特點

作為新一代的監控框架,Prometheus 具有以下特點:

  • 強大的多維度數據模型:
    1. 時間序列數據通過 metric 名和鍵值對來區分。
    2. 所有的 metrics 都可以設置任意的多維標簽。
    3. 數據模型更隨意,不需要刻意設置為以點分隔的字符串。
    4. 可以對數據模型進行聚合,切割和切片操作。
    5. 支持雙精度浮點類型,標簽可以設為全 unicode。
  • 靈活而強大的查詢語句(PromQL):在同一個查詢語句,可以對多個 metrics 進行乘法、加法、連接、取分數位等操作。
  • 易于管理: Prometheus server 是一個單獨的二進制文件,可直接在本地工作,不依賴于分布式存儲。
  • 高效:平均每個采樣點僅占 3.5 bytes,且一個 Prometheus server 可以處理數百萬的 metrics。
    使用 pull 模式采集時間序列數據,這樣不僅有利于本機測試而且可以避免有問題的服務器推送壞的 metrics。
  • 可以采用 push gateway 的方式把時間序列數據推送至 Prometheus server 端。
  • 可以通過服務發現或者靜態配置去獲取監控的 targets。
  • 有多種可視化圖形界面。
  • 易于伸縮。

組成及架構

Prometheus 生態圈中包含了多個組件,其中許多組件是可選的:

  • Prometheus Server: 用于收集和存儲時間序列數據。
  • Client Library: 客戶端庫,為需要監控的服務生成相應的 metrics 并暴露給 Prometheus server。當 Prometheus server 來 pull 時,直接返回實時狀態的 metrics。
  • Push Gateway: 主要用于短期的 jobs。由于這類 jobs 存在時間較短,可能在 Prometheus 來 pull 之前就消失了。為此,這次 jobs 可以直接向 Prometheus server 端推送它們的 metrics。這種方式主要用于服務層面的 metrics,對于機器層面的 metrices,需要使用 node exporter。
  • Exporters: 用于暴露已有的第三方服務的 metrics 給 Prometheus。
  • Alertmanager: 從 Prometheus server 端接收到 alerts 后,會進行去除重復數據,分組,并路由到對收的接受方式,發出報警。常見的接收方式有:電子郵件,pagerduty,OpsGenie, webhook 等。
  • 一些其他的工具。

下圖為 Prometheus 官方文檔中的架構圖:

Prometheus 入門

從上圖可以看出,Prometheus 的主要模塊包括:Prometheus server, exporters, Pushgateway, PromQL, Alertmanager 以及圖形界面。

其大概的工作流程是:

  1. Prometheus server 定期從配置好的 jobs 或者 exporters 中拉 metrics,或者接收來自Pushgateway 發過來的 metrics,或者從其他的 Prometheus server 中拉 metrics。
  2. Prometheus server 在本地存儲收集到的 metrics,并運行已定義好的 alert.rules,記錄新的時間序列或者向 Alertmanager 推送警報。
  3. Alertmanager 根據配置文件,對接收到的警報進行處理,發出告警。
    在圖形界面中,可視化采集數據。

相關概念

下面將對 Prometheus 中的數據模型(時間序列),metric 類型,instance 和 jobs等概念進行介紹。

數據模型

Prometheus 中存儲的數據為時間序列,是由 metric 的名字和一系列的標簽(鍵值對)唯一標識的,不同的標簽則代表不同的時間序列。

  • metric 名字:該名字應該具有語義,一般用于表示 metric 的功能,例如:http_requests_ total, 表示 http 請求的總數。其中,metric 名字由 ASCII 字符,數字,下劃線,以及冒號組成,且必須滿足正則表達式 [a-zA-Z:][a-zA-Z0-9:]*。
  • 標簽:使同一個時間序列有了不同維度的識別。例如 http_requests_total{method="Get"} 表示所有 http 請求中的 Get 請求。當 method="post" 時,則為新的一個 metric。標簽中的鍵由 ASCII 字符,數字,以及下劃線組成,且必須滿足正則表達式 [a-zA-Z:][a-zA-Z0-9:]*。
  • 樣本:實際的時間序列,每個序列包括一個 float64 的值和一個毫秒級的時間戳。
  • 格式:<metric name>{<label name>=<label value>, …},例如:http_requests_total{method="POST",endpoint="/api/tracks"}。

Metrics種類

Prometheus客戶端庫提供了四種核心Metrics類型。

Counter(計數器)
  • 說明:Counter是一個累積度量,它表示一個單調遞增的 Metrics,其值只能在重啟時遞增或重置為零
  • 場景:可以使用Counter來表示http的請求數、已完成的任務數或錯誤數、下單數。
Gauge(測量儀)
  • 說明:當前值的一次快照(snapshot)測量,可增可減。
  • 場景:磁盤使用率,當前同時在線用戶數。
Histogram(直方圖)
  • 說明:通過區間統計樣本分布。
  • 場景:請求延遲時間的統計。例如統計 0~200ms、200ms~400ms、400ms~800ms 區間的請求數有多。
Summary(匯總)
  • 說明:根據樣本統計出百分位。
  • 場景:請求延遲時間的統計。例如統計 95%的請求延遲 < xxx ms ,99%的請求延遲 < xxx ms

instance 和 jobs

在Prometheus術語中,你可以scrape(刮擦)的端點稱為 實例,通常對應于單個進程。一組同種類型的 instances(主要用于保證可擴展性和可靠性),例如:具有四個復制instances(實例)的API服務器job作業:

  • job: api-server
    • instance 1: 1.2.3.4:5670
    • instance 2: 1.2.3.4:5671
    • instance 3: 5.6.7.8:5670
    • instance 4: 5.6.7.8:5671

當Prometheus scrape(刮擦)目標時,它會自動在scrape的時間序列上附加一些標簽,用來識別scrape的目標。

  • job:目標所屬的已配置job名稱。
  • instance:<host>:<port>已刮擦的目標URL 的一部分。

對于每次實例 scrape(刮取,Prometheus都會在以下時間序列中存儲樣本:

  • up{job="\<job-name\>", instance="\<instance-id\>"}:1如果實例是健康的,即可達,或者0刮擦失敗。
  • scrape_duration_seconds{job="\<job-name\>", instance="\<instance-id\>"}:刮擦持續時間。
  • scrape_samples_post_metric_relabeling{job="\<job-name\>", instance="\<instance-id\>"}:應用度量標準重新標記后剩余的樣本數。
  • scrape_samples_scraped{job="\<job-name\>", instance="\<instance-id\>"}:目標暴露的樣本數。
  • scrape_series_added{job="\<job-name\>", instance="\<instance-id\>"}:該刮擦中新系列的大致數量。v2.10中的新功能。

up時間序列對于實例可用性監視非常有用。

安裝和配置

安裝

你可以在官網 https://prometheus.io/download/ 下載 安裝包,解壓后使用。為了方便,我使用docker 鏡像的方式 運行Prometheus。

docker run --name prometheus -d -p 9090:9090 prom/prometheus

瀏覽器輸入http://localhost:9090 ,訪問 Prometheus 的 Web UI:

Prometheus 入門

點擊菜單欄 “Status” 下的 Targets ,界面如下:

Prometheus 入門

可以看大Prometheus 自身 metrics 處于UP狀態 ,說明 安裝成功。

配置

Prometheus 的配置文件 prometheus.yml 內容如下:

# 全局設置,可以被覆蓋
global:
  scrape_interval:     15s
  evaluation_interval: 15s

rule_files:
  # - "first.rules"
  # - "second.rules"

scrape_configs:
  - job_name: prometheus
    static_configs:
    - targets: ['localhost:9090']

global塊控制 Prometheus 的全局配置。我們有兩種選擇。第一個,scrape_interval控制Prometheus 刮擦目標的頻率。你可以為單個目標覆蓋此值。在這種情況下,全局設置是每15秒刮一次。該evaluation_interval選項控制普羅米修斯評估規則的頻率。Prometheus 使用規則創建新的時間序列并生成警報。

rule_files塊指定我們希望 Prometheus 加載的任何規則的位置。現在我們沒有規則。

最后一個塊scrape_configs控制 Prometheus 監視的資源。由于 Prometheus 還將自己的數據公開為HTTP端點,因此它可以抓取并監控自身的健康狀況。在默認配置中有一個名為 prometheus 的job,它抓取 prometheus 服務器 公開的時間序列數據。該作業包含一個靜態配置的目標,即端口9090上的本地主機。返回的時間序列數據將詳細說明Prometheus服務器的狀態和性能。

實驗

Prometheus HTTP 度量模擬器

為了演示 Prometheus 的簡單使用,這里運行一個 Prometheus HTTP 度量模擬器。模擬一個簡單的HTTP微服務,生成Prometheus Metrics,通過 docker 運行。

docker run -p 8080:8080 pierrevincent/prom-http-simulator:0.1

它在/metrics端點下公開以下Prometheus指標:

  • http_requests_total:請求計數器,標簽endpoint和status
  • http_request_duration_milliseconds:請求延遲直方圖

可以開啟流量高峰模式,更改流量高峰模式可以通過以下方式完成:

# ON
curl -X POST http://127.0.0.1:8080/spike/on

# OFF
curl -X POST http://127.0.0.1:8080/spike/off

# RANDOM
curl -X POST http://127.0.0.1:8080/spike/random

錯誤率默認為1%。它可以更改為0到100之間的數字:

# 例如將錯誤率設置為50%
curl -H 'Content-Type: application/json' -X PUT -d '{"error_rate": 50}' http://127.0.0.1:8080/error_rate

修改Prometheus配置

需要將 HTTP 度量模擬器 的 metrics端點 配置到 Prometheus的配置文件 prometheus.yml 中。

創建一個 prometheus.yml 文件 內容如下:

global:
  scrape_interval: 5s
  evaluation_interval: 5s
  scrape_timeout: 5s

scrape_configs:
  - job_name: 'prometheus'
    static_configs:
    - targets: ['localhost:9090']
  - job_name: 'http-simulator'
    metrics_path: /metrics
    static_configs:
    - targets: ['172.16.1.232:8080']

通過docker up 命令替換 容器中的配置文件:

docker cp prometheus.yml prometheus:/etc/prometheus/

重啟容器:

docker restart prometheus

訪問 http://localhost:9090/targets ,發現已經出現了 target “http-simulator” ,并且為UP狀態。

Prometheus 入門

查詢

請求率(Request Rate)查詢

查詢http請求數

http_requests_total{job="http-simulator"}

Prometheus 入門

查詢成功login請求數

http_requests_total{job="http-simulator", status="200", endpoint="/login"}

Prometheus 入門

查詢成功請求數,以endpoint區分

http_requests_total{job="http-simulator", status="200"}

查詢總成功請求數

sum(http_requests_total{job="http-simulator", status="200"})

查詢成功請求率,以endpoint區分

rate(http_requests_total{job="http-simulator", status="200"}[5m])

查詢總成功請求率

sum(rate(http_requests_total{job="http-simulator", status="200"}[5m]))
延遲分布(Latency distribution)查詢

查詢http-simulator延遲分布

http_request_duration_milliseconds_bucket{job="http-simulator"}

查詢成功login延遲分布

http_request_duration_milliseconds_bucket{job="http-simulator", status="200", endpoint="/login"}

不超過200ms延遲的成功login請求占比

sum(http_request_duration_milliseconds_bucket{job="http-simulator", status="200", endpoint="/login", le="200"}) / sum(http_request_duration_milliseconds_count{job="http-simulator", status="200", endpoint="/login"})

成功login請求延遲的99百分位

histogram_quantile(0.99, rate(http_request_duration_milliseconds_bucket{job="http-simulator", status="200", endpoint="/login"}[5m]))

上面給出的這些查詢表達式,在 prometheus 的 查詢界面上自行測試下 ,這里就不一一測試了,

總結

本篇對 Prometheus 的組成,架構和基本概念進行了介紹,并實例演示了 Prometheus 的查詢表達式的應用。本篇是 Prometheus 系列的第一篇, 后續還會有Prometheus與其他圖形界面的集成,與 springboot 應用的集成等 。

參考

https://prometheus.io/docs/introduction/overview/
https://www.ibm.com/developerworks/cn/cloud/library/cl-lo-prometheus-getting-started-and-practice/index.html

關注我

Prometheus 入門

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

吉木萨尔县| 洛隆县| 南雄市| 玉树县| 东乌珠穆沁旗| 龙游县| 临泉县| 青铜峡市| 南安市| 东台市| 理塘县| 许昌市| 江源县| 甘洛县| 乌什县| 乌海市| 江北区| 裕民县| 黎城县| 金溪县| 东源县| 金川县| 双柏县| 兴仁县| 湘潭市| 龙口市| 喀喇沁旗| 神池县| 万荣县| 石泉县| 阆中市| 英德市| 家居| 伽师县| 渑池县| 芮城县| 南岸区| 斗六市| 准格尔旗| 惠东县| 伊宁县|