亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

C++聚類算法中的軟聚類與硬聚類

發布時間:2024-11-11 11:23:55 來源:億速云 閱讀:81 作者:小樊 欄目:編程語言

在C++中實現聚類算法時,軟聚類和硬聚類是兩種常見的方法,它們在處理數據點歸屬問題時有著不同的方式。

硬聚類

硬聚類是一種將數據點劃分為固定數量的簇的方法,每個數據點只能屬于一個簇,且簇的邊界是明確的。在C++中,可以使用多種算法來實現硬聚類,如K-means算法。

K-means算法是一種迭代優化算法,旨在將n個觀測值劃分為k個(k≤n)聚類,使得每個觀測值屬于最近的均值(聚類中心)所代表的聚類,同時使得各聚類的內部觀測值之間的平方距離(或歐氏距離)之和最小。

以下是一個簡單的C++ K-means算法實現示例:

#include <iostream>
#include <vector>
#include <cmath>
#include <random>

struct Point {
    double x, y;
};

double distance(const Point& a, const Point& b) {
    return std::sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}

std::vector<Point> kMeans(const std::vector<Point>& points, int k, int maxIterations = 100) {
    std::vector<Point> centroids(k);
    std::vector<int> assignments(points.size(), -1);
    std::default_random_engine generator;
    std::uniform_int_distribution<int> distribution(0, k - 1);

    for (int i = 0; i < maxIterations; ++i) {
        // Assign points to the nearest centroid
        std::vector<int> counts(k, 0);
        for (size_t j = 0; j < points.size(); ++j) {
            double minDist = std::numeric_limits<double>::max();
            int closestCentroid = -1;
            for (int c = 0; c < k; ++c) {
                double dist = distance(points[j], centroids[c]);
                if (dist < minDist) {
                    minDist = dist;
                    closestCentroid = c;
                }
            }
            assignments[j] = closestCentroid;
            counts[closestCentroid]++;
        }

        // Update centroids
        for (int c = 0; c < k; ++c) {
            if (counts[c] > 0) {
                centroids[c] = {0, 0};
                for (size_t j = 0; j < points.size(); ++j) {
                    if (assignments[j] == c) {
                        centroids[c].x += points[j].x;
                        centroids[c].y += points[j].y;
                    }
                }
                centroids[c].x /= counts[c];
                centroids[c].y /= counts[c];
            }
        }
    }

    return centroids;
}

int main() {
    std::vector<Point> points = {{1, 2}, {1, 4}, {1, 0}, {10, 2}, {10, 4}, {10, 0}};
    int k = 2;
    std::vector<Point> centroids = kMeans(points, k);

    for (const auto& centroid : centroids) {
        std::cout << "Centroid: (" << centroid.x << ", " << centroid.y << ")\n";
    }

    return 0;
}

軟聚類

與硬聚類不同,軟聚類允許數據點屬于多個簇,每個數據點屬于每個簇的概率是一個軟決策。這種方法在處理數據時提供了更大的靈活性,因為它允許數據點部分地屬于一個簇。

在C++中,K-means++是一種常用的軟聚類算法,它是K-means算法的擴展,用于改進初始質心的選擇,從而提高聚類的質量。K-means++通過選擇距離現有質心較遠的點作為新的質心,以避免初始質心選擇的隨機性導致的不穩定性。

以下是一個簡單的C++ K-means++算法實現示例:

#include <iostream>
#include <vector>
#include <cmath>
#include <random>

struct Point {
    double x, y;
};

double distance(const Point& a, const Point& b) {
    return std::sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}

std::vector<Point> kMeansPlusPlus(const std::vector<Point>& points, int k, int maxIterations = 100) {
    std::vector<Point> centroids(k);
    std::vector<int> assignments(points.size(), -1);
    std::default_random_engine generator;
    std::uniform_real_distribution<double> distribution(0.0, 1.0);

    // Choose the first centroid randomly
    centroids[0] = points[distribution(generator) * points.size()];

    for (int i = 1; i < k; ++i) {
        std::vector<double> distances(points.size());
        for (size_t j = 0; j < points.size(); ++j) {
            double dist = distance(points[j], centroids[i - 1]);
            distances[j] = dist * dist; // Square the distance for selection
        }

        // Select the next centroid with probability proportional to the squared distance
        double sumDistances = 0;
        for (size_t j = 0; j < points.size(); ++j) {
            sumDistances += distances[j];
            if (distribution(generator) < sumDistances / (i * points.size())) {
                centroids[i] = points[j];
                break;
            }
        }
    }

    // Assign points to the nearest centroid
    std::vector<int> counts(k, 0);
    for (size_t j = 0; j < points.size(); ++j) {
        double minDist = std::numeric_limits<double>::max();
        int closestCentroid = -1;
        for (int c = 0; c < k; ++c) {
            double dist = distance(points[j], centroids[c]);
            if (dist < minDist) {
                minDist = dist;
                closestCentroid = c;
            }
        }
        assignments[j] = closestCentroid;
        counts[closestCentroid]++;
    }

    return centroids;
}

int main() {
    std::vector<Point> points = {{1, 2}, {1, 4}, {1, 0}, {10, 2}, {10, 4}, {10, 0}};
    int k = 2;
    std::vector<Point> centroids = kMeansPlusPlus(points, k);

    for (const auto& centroid : centroids) {
        std::cout << "Centroid: (" << centroid.x << ", " << centroid.y << ")\n";
    }

    return 0;
}

在這兩個示例中,我們定義了一個Point結構體來表示二維空間中的點,并實現了計算兩點之間距離的函數distancekMeans函數實現了基本的K-means硬聚類算法,而kMeansPlusPlus函數實現了K-means++軟聚類算法。在kMeansPlusPlus中,我們通過選擇距離現有質心較遠的點作為新的質心,來改進初始質心的選擇。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

c++
AI

尼勒克县| 甘泉县| 秦皇岛市| 长子县| 台东县| 辽中县| 七台河市| 开封市| 鱼台县| 榆树市| 文昌市| 贞丰县| 平度市| 长岭县| 秭归县| 利津县| 沽源县| 麟游县| 于都县| 韩城市| 奉化市| 万山特区| 武威市| 美姑县| 丽水市| 武胜县| 隆尧县| 宁都县| 浮梁县| 东源县| 沙洋县| 双桥区| 晋宁县| 南充市| 孝昌县| 东至县| 元氏县| 玉门市| 贵港市| 定南县| 淳化县|