您好,登錄后才能下訂單哦!
本篇內容介紹了“Python數據分析numpy數組的創建方式有哪些”的有關知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領大家學習一下如何處理這些情況吧!希望大家仔細閱讀,能夠學有所成!
如下,源雖然是不同類型的元素的列表,但是創建numpy對象后,都轉換為字符串類型,類型的優先級是:字符串 > 浮點數 > 整數
首先在jupyter根目錄中上傳了一張"100.png"的圖片,然后使用如下代碼即可讀取
import matplotlib.pyplot as plt img_arr=plt.imread("./100.png")
回顯如下:
array([[[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], ..., [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], ..., [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], ..., [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]], ..., [[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], ..., [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], ..., [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], ..., [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]], dtype=float32)
對數組中每個元素減0.1,圖像已經發生了變化
“Python數據分析numpy數組的創建方式有哪些”的內容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業相關的知識可以關注億速云網站,小編將為大家輸出更多高質量的實用文章!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。