亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

python物體標識怎么實現

發布時間:2021-09-07 11:33:05 來源:億速云 閱讀:166 作者:小新 欄目:編程語言

這篇文章主要為大家展示了“python物體標識怎么實現”,內容簡而易懂,條理清晰,希望能夠幫助大家解決疑惑,下面讓小編帶領大家一起研究并學習一下“python物體標識怎么實現”這篇文章吧。

1、讀取彩色圖像進行灰度化和二值化。

def get_binary_img(img):
    # gray img to bin image
    bin_img = np.zeros(shape=(img.shape), dtype=np.uint8)
    h = img.shape[0]
    w = img.shape[1]
    for i in range(h):
        for j in range(w):
            bin_img[i][j] = 255 if img[i][j] < 255 else 0
    return bin_img
# 調用
file_name = "./test.bmp"
img = cv2.imread(file_name)
# 灰度化
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化
bin_img = get_binary_img(gray_img)

2、目標標志,每個物體的像素值是該物體的標志,為計算面積打下基礎。

# 標記目標
def label_region(bin_img,width,height):
    visited = np.zeros(shape=bin_img.shape,dtype=np.uint8)
    label_img = np.zeros(shape=bin_img.shape, dtype=np.uint8)
    label = 0
    for i in range(height):
        for j in range(width):
            if bin_img[i][j] == 255 and visited[i][j]==0 : //找到種子點
                # visit
                visited[i][j] = 1
                label += 1
                label_img[i][j] = label
                # label
                label_from_seed(bin_img, visited, i, j, label, label_img)
    return label_img
# 區域增長法進行標記
def label_from_seed(bin_img,visited,i,j,label,out_img):
    directs = [(-1, -1), (0, -1), (1, -1), (1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0)]
    seeds = [(i,j)]
    height = bin_img.shape[0]
    width = bin_img.shape[1]
    while len(seeds):
        seed = seeds.pop(0)
        i = seed[0]
        j = seed[1]
        if visited[i][j] == 0:
            visited[i][j] = 1
            out_img[i][j] = label
 
        # 以(i,j)為起點進行標記
        for direct in directs:
            cur_i = i + direct[0]
            cur_j = j + direct[1]
             # 非法
            if cur_i < 0 or cur_j < 0 or cur_i >= height or cur_j >= width:
                continue
             # 沒有訪問過
            if visited[cur_i][cur_j] == 0 and bin_img[cur_i][cur_j] == 255:
                visited[cur_i][cur_j] = 1
                out_img[cur_i][cur_j] = label
                seeds.append((cur_i,cur_j))

3、通過遍歷標記的圖像,統計每個編號中出現的像素數,可以得到不同區域的面積大小。

def get_region_area(label_img,label):
    count = { key: 0  for key in range(label + 1)}
    start_pt = {key:(0,0) for key in range(label + 1)}
    height = label_img.shape[0]
    width  = label_img.shape[1]
    for i in range(height):
        for j in range(width):
            key = label_img[i][j]
            count[key] += 1
            if count[key] == 1:
                start_pt[key] = (j,i)
    return count,start_pt

以上是“python物體標識怎么實現”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

普宁市| 安新县| 扬中市| 昭苏县| 阿鲁科尔沁旗| 黑水县| 博野县| 宕昌县| 遂溪县| 松原市| 石柱| 治县。| 延边| 乐昌市| 策勒县| 肥东县| 绵竹市| 镇远县| 专栏| 汽车| 平乡县| 富锦市| 丹阳市| 宿松县| 孟州市| 全南县| 新民市| 菏泽市| 容城县| 碌曲县| 望城县| 石家庄市| 天峻县| 南岸区| 马鞍山市| 昌黎县| 忻城县| 尚义县| 丰都县| 伊金霍洛旗| 昭通市|