亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

用FP-growth算法構建FP樹

發布時間:2021-06-25 09:03:36 來源:億速云 閱讀:402 作者:chen 欄目:開發技術

這篇文章主要介紹“用FP-growth算法構建FP樹”,在日常操作中,相信很多人在用FP-growth算法構建FP樹問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”用FP-growth算法構建FP樹”的疑惑有所幫助!接下來,請跟著小編一起來學習吧!

  FP代表頻繁模式(Frequent Pattern),算法主要分為兩個步驟:FP-tree構建、挖掘頻繁項集。

FP樹表示法

  FP樹通過逐個讀入事務,并把事務映射到FP樹中的一條路徑來構造。由于不同的事務可能會有若干個相同的項,因此它們的路徑可能部分重疊。路徑相互重疊越多,使用FP樹結構獲得的壓縮效果越好;如果FP樹足夠小,能夠存放在內存中,就可以直接從這個內存中的結構提取頻繁項集,而不必重復地掃描存放在硬盤上的數據。

  一顆FP樹如下圖所示:

用FP-growth算法構建FP樹

  通常,FP樹的大小比未壓縮的數據小,因為數據的事務常常共享一些共同項,在最好的情況下,所有的事務都具有相同的項集,FP樹只包含一條節點路徑;當每個事務都具有唯一項集時,導致最壞情況發生,由于事務不包含任何共同項,FP樹的大小實際上與原數據的大小一樣。

  FP樹的根節點用φ表示,其余節點包括一個數據項和該數據項在本路徑上的支持度;每條路徑都是一條訓練數據中滿足最小支持度的數據項集;FP樹還將所有相同項連接成鏈表,上圖中用藍色連線表示。

  為了快速訪問樹中的相同項,還需要維護一個連接具有相同項的節點的指針列表(headTable),每個列表元素包括:數據項、該項的全局最小支持度、指向FP樹中該項鏈表的表頭的指針。

用FP-growth算法構建FP樹

構建FP樹

  現在有如下數據:

用FP-growth算法構建FP樹  

FP-growth算法需要對原始訓練集掃描兩遍以構建FP樹。

  第一次掃描,過濾掉所有不滿足最小支持度的項;對于滿足最小支持度的項,按照全局最小支持度排序,在此基礎上,為了處理方便,也可以按照項的關鍵字再次排序。

用FP-growth算法構建FP樹

第一次掃描的后的結果

  第二次掃描,構造FP樹。

  參與掃描的是過濾后的數據,如果某個數據項是第一次遇到,則創建該節點,并在headTable中添加一個指向該節點的指針;否則按路徑找到該項對應的節點,修改節點信息。具體過程如下所示:

用FP-growth算法構建FP樹

事務001,{z,x}

用FP-growth算法構建FP樹

事務002,{z,x,y,t,s}

用FP-growth算法構建FP樹

事務003,{z}

用FP-growth算法構建FP樹

事務004,{x,s,r}

用FP-growth算法構建FP樹

事務005,{z,x,y,t,r}

用FP-growth算法構建FP樹

事務006,{z,x,y,t,s}

  從上面可以看出,headTable并不是隨著FPTree一起創建,而是在第一次掃描時就已經創建完畢,在創建FPTree時只需要將指針指向相應節點即可。從事務004開始,需要創建節點間的連接,使不同路徑上的相同項連接成鏈表。

  代碼如下:

def loadSimpDat():
    simpDat = [['r', 'z', 'h', 'j', 'p'],
               ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
               ['z'],
               ['r', 'x', 'n', 'o', 's'],
               ['y', 'r', 'x', 'z', 'q', 't', 'p'],
               ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
    return simpDat
def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        fset = frozenset(trans)
        retDict.setdefault(fset, 0)
        retDict[fset] += 1
    return retDict
class treeNode:
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode
        self.children = {}
    def inc(self, numOccur):
        self.count += numOccur
    def disp(self, ind=1):
        print('   ' * ind, self.name, ' ', self.count)
        for child in self.children.values():
            child.disp(ind + 1)

def createTree(dataSet, minSup=1):
    headerTable = {}
    #此一次遍歷數據集, 記錄每個數據項的支持度
    for trans in dataSet:
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + 1
    #根據最小支持度過濾
    lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))
    for k in lessThanMinsup: del(headerTable[k])
    freqItemSet = set(headerTable.keys())
    #如果所有數據都不滿足最小支持度,返回None, None
    if len(freqItemSet) == 0:
        return None, None
    for k in headerTable:
        headerTable[k] = [headerTable[k], None]
    retTree = treeNode('φ', 1, None)
    #第二次遍歷數據集,構建fp-tree
    for tranSet, count in dataSet.items():
        #根據最小支持度處理一條訓練樣本,key:樣本中的一個樣例,value:該樣例的的全局支持度
        localD = {}
        for item in tranSet:
            if item in freqItemSet:
                localD[item] = headerTable[item][0]
        if len(localD) > 0:
            #根據全局頻繁項對每個事務中的數據進行排序,等價于 order by p[1] desc, p[0] desc
            orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]
            updateTree(orderedItems, retTree, headerTable, count)
    return retTree, headerTable

def updateTree(items, inTree, headerTable, count):
    if items[0] in inTree.children:  # check if orderedItems[0] in retTree.children
        inTree.children[items[0]].inc(count)  # incrament count
    else:  # add items[0] to inTree.children
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        if headerTable[items[0]][1] == None:  # update header table
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
    if len(items) > 1:  # call updateTree() with remaining ordered items
        updateTree(items[1:], inTree.children[items[0]], headerTable, count)

def updateHeader(nodeToTest, targetNode):  # this version does not use recursion
    while (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode
simpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

  上面的代碼在第一次掃描后并沒有將每條訓練數據過濾后的項排序,而是將排序放在了第二次掃描時,這可以簡化代碼的復雜度。

  控制臺信息:

用FP-growth算法構建FP樹

項的順序對FP樹的影響

  值得注意的是,對項的關鍵字排序將會影響FP樹的結構。下面兩圖是相同訓練集生成的FP樹,圖1除了按照最小支持度排序外,未對項做任何處理;圖2則將項按照關鍵字進行了降序排序。樹的結構也將影響后續發現頻繁項的結果。

用FP-growth算法構建FP樹

圖1 未對項的關鍵字排序

用FP-growth算法構建FP樹

圖2 對項的關鍵字降序排序

到此,關于“用FP-growth算法構建FP樹”的學習就結束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學習,快去試試吧!若想繼續學習更多相關知識,請繼續關注億速云網站,小編會繼續努力為大家帶來更多實用的文章!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

泽普县| 江孜县| 台南县| 株洲县| 宁乡县| 元氏县| 饶平县| 六安市| 蒲江县| 澜沧| 莱阳市| 连平县| 昌乐县| 四子王旗| 韶关市| 班戈县| 黎城县| 翁牛特旗| 浦江县| 彭山县| 自贡市| 汨罗市| 湘潭市| 灌南县| 崇礼县| 阿勒泰市| 祁连县| 万源市| 溧阳市| 同心县| 彭州市| 涿鹿县| 奉节县| 星座| 永善县| 庐江县| 纳雍县| 乌拉特中旗| 疏勒县| 滨海县| 寿光市|