亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Spark筆記整理(一):spark單機安裝部署、分布式集群與HA安裝部署+spark源碼編譯

發布時間:2020-07-19 13:19:30 來源:網絡 閱讀:27138 作者:xpleaf 欄目:大數據

[TOC]


spark單機安裝部署

1.安裝scala
解壓:tar -zxvf soft/scala-2.10.5.tgz -C app/
重命名:mv scala-2.10.5/ scala
配置到環境變量:
export SCALA_HOME=/home/uplooking/app/scala
export PATH=$PATH:$SCALA_HOME/bin
# 雖然spark本身自帶scala,但還是建議安裝

2.安裝單機版spark
解壓:tar -zxvf soft/spark-1.6.2-bin-hadoop2.6.tgz -C app/
重命名:mv spark-1.6.2-bin-hadoop2.6/ spark
配置到環境變量:
export SPARK_HOME=/home/uplooking/app/spark
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin
測試:
運行一個簡單的spark程序
spark-shell
sc.textFile("./hello").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).collect.foreach(println)

完全分布式安裝

修改spark-env.sh
    1、cd /home/uplooking/app/spark/conf
    2、cp spark-env.sh.template spark-env.sh
    3、vi spark-env.sh
    export JAVA_HOME=/opt/jdk
    export SCALA_HOME=/home/uplooking/app/scala
    export SPARK_MASTER_IP=uplooking01
    export SPARK_MASTER_PORT=7077
    export SPARK_WORKER_CORES=1
    export SPARK_WORKER_INSTANCES=1
    export SPARK_WORKER_MEMORY=1g
    export HADOOP_CONF_DIR=/home/uplooking/app/hadoop/etc/hadoop
修改slaves配置文件
    添加兩行記錄
    uplooking02
    uplooking03
部署到uplooking02和uplooking03這兩臺機器上(這兩臺機器需要提前安裝scala)
    scp -r /home/uplooking/app/scala uplooking@uplooking02:/home/uplooking/app
    scp -r /home/uplooking/app/scala uplooking@uplooking03:/home/uplooking/app
    ----
    scp -r /home/uplooking/app/spark uplooking@uplooking02:/home/uplooking/app
    scp -r /home/uplooking/app/spark uplooking@uplooking03:/home/uplooking/app
    ---在uplooking02和uplooking03上加載好環境變量,需要source生效
    scp /home/uplooking/.bash_profile uplooking@uplooking02:/home/uplooking
    scp /home/uplooking/.bash_profile uplooking@uplooking03:/home/uplooking
啟動
    修改事宜
        為了避免和hadoop中的start/stop-all.sh腳本發生沖突,將spark/sbin/start/stop-all.sh重命名
        mv start-all.sh start-spark-all.sh
        mv stop-all.sh stop-spark-all.sh
    啟動
        sbin/start-spark-all.sh
        會在我們配置的主節點uplooking01上啟動一個進程Master
        會在我們配置的從節點uplooking02上啟動一個進程Worker
        會在我們配置的從節點uplooking03上啟動一個進程Worker
    簡單的驗證
        啟動spark-shell
        bin/spark-shell
        scala> sc.textFile("hdfs://ns1/data/hello").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).collect.foreach(println)
        我們發現spark非常快速的執行了這個程序,計算出我們想要的結果

    一個端口:8080/4040
        8080-->spark集群的訪問端口,類似于hadoop中的50070和8088的綜合
        4040-->sparkUI的訪問地址
        7077-->hadoop中的9000端口

基于zookeeper的HA配置

最好在集群停止的時候來做
第一件事
    注釋掉spark-env.sh中兩行內容
        #export SPARK_MASTER_IP=uplooking01
        #export SPARK_MASTER_PORT=7077
第二件事
    在spark-env.sh中加一行內容
        export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=uplooking01:2181,uplooking02:2181,uplooking03:2181 -Dspark.deploy.zookeeper.dir=/spark"
    解釋
        spark.deploy.recoveryMode設置成 ZOOKEEPER
        spark.deploy.zookeeper.urlZooKeeper URL
        spark.deploy.zookeeper.dir ZooKeeper 保存恢復狀態的目錄,缺省為 /spark
重啟集群
    在任何一臺spark節點上啟動start-spark-all.sh
    手動在集群中其他從節點上再啟動master進程:sbin/start-master.sh -->在uplooking02
通過瀏覽器方法 uplooking01:8080 /uplooking02:8080-->Status: STANDBY Status: ALIVE
    驗證HA,只需要手動停掉master上spark進程Master,等一會slave01上的進程Master狀態會從STANDBY編程ALIVE

# 注意,如果在uplooking02上啟動,此時uplooking02也會是master,而uplooking01則都不是,
# 因為配置文件中并沒有指定master,只指定了slave
# spark-start-all.sh也包括了start-master.sh的操作,所以才會在該臺機器上也啟動master.

Spark源碼編譯

安裝好maven后,并且配置好本地的spark倉庫(不然編譯時依賴從網上下載會很慢),
然后就可以在spark源碼目錄執行下面的命令:
mvn -Pyarn -Dhadoop.version=2.6.4 -Dyarn.version=2.6.4 -DskipTests clean package

編譯成功后輸出如下:

......
[INFO] ------------------------------------------------------------------------
[INFO] Reactor Summary:
[INFO] 
[INFO] Spark Project Parent POM ........................... SUCCESS [  3.617 s]
[INFO] Spark Project Test Tags ............................ SUCCESS [ 17.419 s]
[INFO] Spark Project Launcher ............................. SUCCESS [ 12.102 s]
[INFO] Spark Project Networking ........................... SUCCESS [ 11.878 s]
[INFO] Spark Project Shuffle Streaming Service ............ SUCCESS [  7.324 s]
[INFO] Spark Project Unsafe ............................... SUCCESS [ 16.326 s]
[INFO] Spark Project Core ................................. SUCCESS [04:31 min]
[INFO] Spark Project Bagel ................................ SUCCESS [ 11.671 s]
[INFO] Spark Project GraphX ............................... SUCCESS [ 55.420 s]
[INFO] Spark Project Streaming ............................ SUCCESS [02:03 min]
[INFO] Spark Project Catalyst ............................. SUCCESS [02:40 min]
[INFO] Spark Project SQL .................................. SUCCESS [03:38 min]
[INFO] Spark Project ML Library ........................... SUCCESS [03:56 min]
[INFO] Spark Project Tools ................................ SUCCESS [ 15.726 s]
[INFO] Spark Project Hive ................................. SUCCESS [02:30 min]
[INFO] Spark Project Docker Integration Tests ............. SUCCESS [ 11.961 s]
[INFO] Spark Project REPL ................................. SUCCESS [ 42.913 s]
[INFO] Spark Project YARN Shuffle Service ................. SUCCESS [  8.391 s]
[INFO] Spark Project YARN ................................. SUCCESS [ 42.013 s]
[INFO] Spark Project Assembly ............................. SUCCESS [02:06 min]
[INFO] Spark Project External Twitter ..................... SUCCESS [ 19.155 s]
[INFO] Spark Project External Flume Sink .................. SUCCESS [ 22.164 s]
[INFO] Spark Project External Flume ....................... SUCCESS [ 26.228 s]
[INFO] Spark Project External Flume Assembly .............. SUCCESS [  3.838 s]
[INFO] Spark Project External MQTT ........................ SUCCESS [ 33.132 s]
[INFO] Spark Project External MQTT Assembly ............... SUCCESS [  7.937 s]
[INFO] Spark Project External ZeroMQ ...................... SUCCESS [ 17.900 s]
[INFO] Spark Project External Kafka ....................... SUCCESS [ 37.597 s]
[INFO] Spark Project Examples ............................. SUCCESS [02:39 min]
[INFO] Spark Project External Kafka Assembly .............. SUCCESS [ 10.556 s]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 31:22 min
[INFO] Finished at: 2018-04-24T18:33:58+08:00
[INFO] Final Memory: 89M/1440M
[INFO] ------------------------------------------------------------------------

然后就可以在下面的目錄中看到編譯成功的文件:

[uplooking@uplooking01 scala-2.10]$ pwd
/home/uplooking/compile/spark-1.6.2/assembly/target/scala-2.10
[uplooking@uplooking01 scala-2.10]$ ls -lh
總用量 135M
-rw-rw-r-- 1 uplooking uplooking 135M 4月  24 18:28 spark-assembly-1.6.2-hadoop2.6.4.jar

在已經安裝的spark的lib目錄下也可以看到該文件:

[uplooking@uplooking01 lib]$ ls -lh
總用量 291M
-rw-r--r-- 1 uplooking uplooking 332K 6月  22 2016 datanucleus-api-jdo-3.2.6.jar
-rw-r--r-- 1 uplooking uplooking 1.9M 6月  22 2016 datanucleus-core-3.2.10.jar
-rw-r--r-- 1 uplooking uplooking 1.8M 6月  22 2016 datanucleus-rdbms-3.2.9.jar
-rw-r--r-- 1 uplooking uplooking 6.6M 6月  22 2016 spark-1.6.2-yarn-shuffle.jar
-rw-r--r-- 1 uplooking uplooking 173M 6月  22 2016 spark-assembly-1.6.2-hadoop2.6.0.jar
-rw-r--r-- 1 uplooking uplooking 108M 6月  22 2016 spark-examples-1.6.2-hadoop2.6.0.jar
向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

米脂县| 灵石县| 饶平县| 北碚区| 潍坊市| 太保市| 堆龙德庆县| 临江市| 南丹县| 拉孜县| 宽甸| 新竹市| 青冈县| 广汉市| 连平县| 浦东新区| 双峰县| 罗田县| 尉氏县| 太湖县| 公主岭市| 盘山县| 大宁县| 靖远县| 锡林浩特市| 睢宁县| 定西市| 公安县| 呼伦贝尔市| 白水县| 青州市| 改则县| 宁波市| 绿春县| 九台市| 都江堰市| 鄂尔多斯市| 密山市| 屏山县| 永登县| 东至县|