亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

大數據 : Hadoop reduce階段

發布時間:2020-06-05 12:47:15 來源:網絡 閱讀:344 作者:愛碼學院 欄目:大數據

Mapreduce中由于sort的存在,MapTask和ReduceTask直接是工作流的架構。而不是數據流的架構。在MapTask尚未結束,其輸出結果尚未排序及合并前,ReduceTask是又有數據輸入的,因此即使ReduceTask已經創建也只能睡眠等待MapTask完成。從而可以從MapTask節點獲取數據。一個MapTask最終的數據輸出是一個合并的spill文件,可以通過Web地址訪問。所以reduceTask一般在MapTask快要完成的時候才啟動。啟動早了浪費container資源。

ReduceTask是個線程,這個線程運行在YarnChild的Java虛擬機上,我們從ReduceTask.run開始看Reduce階段。 獲取更多大數據視頻資料請加QQ群:947967114

public void run(JobConf job, final TaskUmbilicalProtocol umbilical)

throws IOException, InterruptedException, ClassNotFoundException {

job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());

if (isMapOrReduce()) {

/添加reduce過程需要經過的幾個階段。以便通知TaskTracker目前運 行的情況/

copyPhase = getProgress().addPhase("copy");

sortPhase = getProgress().addPhase("sort");

reducePhase = getProgress().addPhase("reduce");

}

// start thread that will handle communication with parent

TaskReporter reporter = startReporter(umbilical);

// 設置并啟動reporter進程以便和TaskTracker進行交流

boolean useNewApi = job.getUseNewReducer();

//在job client中初始化job時,默認就是用新的API,詳見Job.setUseNewAPI()方法

initialize(job, getJobID(), reporter, useNewApi);

/用來初始化任務,主要是進行一些和任務輸出相關的設置,比如創建commiter,設置工作目錄等/

// check if it is a cleanupJobTask

/以下4個if語句均是根據任務類型的不同進行相應的操作,這些方 法均是Task類的方法,所以與任務是MapTask還是ReduceTask無關/

if (jobCleanup) {

runJobCleanupTask(umbilical, reporter);

return;//只是為了JobCleanup,做完就停

}

if () {

runJobSetupTask(umbilical, reporter);

return;

//主要是創建工作目錄的FileSystem對象

}

if (taskCleanup) {

runTaskCleanupTask(umbilical, reporter);

return;

//設置任務目前所處的階段為結束階段,并且刪除工作目錄

}

下面才是真正要成為reducer

// Initialize the codec

codec = initCodec();

RawKeyValueIterator rIter = null;

ShuffleConsumerPlugin shuffleConsumerPlugin = null;

Class combinerClass = conf.getCombinerClass();

CombineOutputCollector combineCollector =

(null != combinerClass) ?

new CombineOutputCollector(reduceCombineOutputCounter, reporter, conf) : null;

//如果需要就創建combineCollector

Classextends ShuffleConsumerPlugin> clazz =

job.getClass(MRConfig.SHUFFLE_CONSUMER_PLUGIN, Shuffle.class, ShuffleConsumerPlugin.class);

//配置文件找mapreduce.job.reduce.shuffle.consumer.plugin.class默認是shuffle.class

shuffleConsumerPlugin = ReflectionUtils.newInstance(clazz, job);

//創建shuffle類對象

LOG.info("Using ShuffleConsumerPlugin: " + shuffleConsumerPlugin);

ShuffleConsumerPlugin.Context shuffleContext =

new ShuffleConsumerPlugin.Context(getTaskID(), job, FileSystem.getLocal(job), umbilical,

super.lDirAlloc, reporter, codec,

combinerClass, combineCollector,

spilledRecordsCounter, reduceCombineInputCounter,

shuffledMapsCounter,

reduceShuffleBytes, failedShuffleCounter,

mergedMapOutputsCounter,

taskStatus, copyPhase, sortPhase, this,

mapOutputFile, localMapFiles);

//創建context對象,ShuffleConsumerPlugin.Context

shuffleConsumerPlugin.init(shuffleContext);

//這里調用的起始是shuffle的init函數,重點摘要如下。

this.localMapFiles = context.getLocalMapFiles();

scheduler = new ShuffleSchedulerImpl(jobConf, taskStatus, reduceId,

this, copyPhase, context.getShuffledMapsCounter(),

context.getReduceShuffleBytes(), context.getFailedShuffleCounter());

//創建shuffle所需的調度器

merger = createMergeManager(context);

//創建shuffle內部的merge,createMergeManager里面源碼:

return new MergeManagerImpl(reduceId, jobConf, context.getLocalFS(),

context.getLocalDirAllocator(), reporter, context.getCodec(),

context.getCombinerClass(), context.getCombineCollector(),

context.getSpilledRecordsCounter(),

context.getReduceCombineInputCounter(),

context.getMergedMapOutputsCounter(), this, context.getMergePhase(),

context.getMapOutputFile());

//創建MergeMnagerImpl對象和Merge線程

rIter = shuffleConsumerPlugin.run();

//從各個Mapper復制其輸出文件,并加以合并排序,等待直到完成為止

// free up the data structures

mapOutputFilesOnDisk.clear();

sortPhase.complete();

//排序階段完成

setPhase(TaskStatus.Phase.REDUCE);

//進入reduce階段

statusUpdate(umbilical);

Class keyClass = job.getMapOutputKeyClass();

Class valueClass = job.getMapOutputValueClass();

RawComparator comparator = job.getOutputValueGroupingComparator();

//3.Reduce 1.Reduce任務的最后一個階段。它會準備好Map的 keyClass("mapred.output.key.class""mapred.mapoutput.key.class"),valueClass("mapred.mapoutput.value.class"或"mapred.output.value.class")和 Comparator (“mapred.output.value.groupfn.class”或“mapred.output.key.comparator.class”)

if (useNewApi) {

//2.根據參數useNewAPI判斷執行runNewReduce還是runOldReduce。分析潤runNewReduce

runNewReducer(job, umbilical, reporter, rIter, comparator,

keyClass, valueClass);

//0.像報告進程書寫一些信息,1.獲得一個TaskAttemptContext對象。通過這個對象創建reduce、output及用于跟蹤的統計output的RecordWrit、最后創建用于收集reduce結果的Context,2.reducer.run(reducerContext)開始執行reduce

} else {//老API

runOldReducer(job, umbilical, reporter, rIter, comparator,

keyClass, valueClass);

}

shuffleConsumerPlugin.close();

done(umbilical, reporter);

}

(1)reduce分為三個階段(copy就是遠程拷貝Map的輸出數據、sort就是對所有的數據做排序、reduce做聚集就是我們自己寫的reducer),為這三個階段分別設置Progress,用來和TaskTracker通信報道狀態。

(2)上面代碼的15-40行和MapReduce的MapTask任務的運行源碼級分析中對應部分基本相同,可參考之;

(3)codec = initCodec()這句是檢查map的輸出是否是壓縮的,壓縮的則返回壓縮codec實例,否則返回null,這里討論不壓縮的;

(4)我們討論完全分布式的hadoop,即isLocal==false,然后構造一個ReduceCopier對象reduceCopier,并調用reduceCopier.fetchOutputs()方法拷貝各個Mapper的輸出,到本地;

(5)然后copy階段完成,設置接下來的階段是sort階段,更新狀態信息;

(6)根據isLocal來選擇KV迭代器,完全分布式的會使用reduceCopier.createKVIterator(job, rfs, reporter)作為KV迭代器;

(7)sort階段完成,設置接下來的階段是reduce階段,更新狀態信息;

(8)然后獲取一些配置信息,并根據是否使用新API選擇不同的處理方式,這里是新的API,調用runNewReducer(job, umbilical, reporter, rIter, comparator, keyClass, valueClass)會執行reducer;

(9)done(umbilical, reporter)這個方法用于做結束任務的一些清理工作:更新計數器updateCounters();如果任務需要提交,設置Taks狀態為COMMIT_PENDING,并利用TaskUmbilicalProtocol,匯報Task完成,等待提交,然后調用commit提交任務;設置任務結束標志位;結束Reporter通信線程;發送最后一次統計報告(通過sendLastUpdate方法);利用TaskUmbilicalProtocol報告結束狀態(通過sendDone方法)。

有些人將Reduce Task分為了5個階段:一、shuffle階段:也稱為Copy階段,就是從各個MapTask上遠程拷貝一片數據,如果大小超過一定閾值就寫到磁盤,否則放入內存;二、Merge階段:在遠程拷貝數據的同時,Reduce Task啟動了兩個后臺線程對內存和磁盤上的文件進行合并,防止內存使用過多和磁盤文件過多;三、sort階段:用戶編寫的reduce方法的輸入數據是按key進行聚集的,需要對copy過來的數據排序,這里用的是歸并排序,因為Map Task的結果是有序的;四、Reduce階段:將每組數據依次交給用戶編寫的Reduce方法處理;五、write階段:就是將結果寫入HDFS。

上面的5個階段分的比較細了,代碼里分為3個階段copy、sort、reduce,我們在eclipse運行MR程序時,控制臺看到的reduce階段的百分比就分為3個階段各占33.3%。

這里的shuffleConsumerPlugin是實現了ShuffleConsumerPlugin的某個類對象。具體可以通過配置文件mapreduce.job.reduce.shuffle.consumer.plugin.class選項設置,默認情況下是使用shuffle。我們在代碼中分析過完成shuffleConsumerPlugin.run,通常是shuffle.run,因為有了這個過程Mapper的合成的spill文件才能通過HTTP協議傳輸到Reducer端。有了數據才能進行runNewReducer或者runOldReducer。可以說shuffle對象就是MapTask的搬運工。而且shuffle的搬運方式不是一遍搬運一遍Reducer處理,而是要把MapTask所有的數據都搬運過來,并且進行合并排序之后才開始提供給對應的Reducer。

一般而言,MapTask和ReduceTask是多對多的關系,假如有M個Mapper有N個Reducer。我們知道N個Reducer對應著N個partition,所以每個Mapper都會被劃分成N個Partition,每個Reducer承擔著一個Partition部分的操作。這樣每一個Reducer從每個不同的Mapper內拿來屬于自己的那部分數據,這樣每個Reducer就有M份不同Mapper的數據,把M份數據合并在一起就是一個最終完整的Partition,有必要還會進行排序,這時候才成為了Reducer的具體輸入數據。這個數據搬運和重組的過程被叫做shuffle過程。shuffle這個過程開銷頗大,會占用較大的網絡流量,因為涉及到大量數據的傳輸,shuffle過程也會有延遲,因為M個Mapper的計算有快有慢,但是shuffle要所有的Mapper完成才能開始,Reduce又必須等shuffle完成才能開始,當然這種延遲不是shuffle造成的,如果Reducer不需要全部Partition數據到位并排序,就不用與最慢的Mapper同步,這是排序付出的代價。

所以shuffle在MapReduce框架中起著非常重要的作用。我們先看shuffle的摘要: 獲取更多大數據視頻資料請加QQ群:947967114

public class Shuffle implements ShuffleConsumerPlugin, ExceptionReporter

private ShuffleConsumerPlugin.Context context;

private TaskAttemptID reduceId;

private JobConf jobConf;

private TaskUmbilicalProtocol umbilical;

private ShuffleSchedulerImpl scheduler;

private MergeManager merger;

private Task reduceTask; //Used for status updates

private Map localMapFiles;

public void init(ShuffleConsumerPlugin.Context context)

public RawKeyValueIterator run() throws IOException, InterruptedException

在ReduceTask.run中看到調用了shuffle.init,在run理創建了ShuffleSchedulerImpl和MergeManagerImpl對象。后面會講解就是是做什么用的。

之后就是對shuffle.run的調用,shuffle雖然有一個run但是并非是一個線程,只是用了這個名字而已。

我們看:ReduceTask.run->Shuffle.run

public RawKeyValueIterator run() throws IOException, InterruptedException {

int eventsPerReducer = Math.max(MIN_EVENTS_TO_FETCH,

MAX_RPC_OUTSTANDING_EVENTS / jobConf.getNumReduceTasks());

int maxEventsToFetch = Math.min(MAX_EVENTS_TO_FETCH, eventsPerReducer);

// Start the map-completion events fetcher thread

final EventFetcher eventFetcher =

new EventFetcher(reduceId, umbilical, scheduler, this,

maxEventsToFetch);

eventFetcher.start();

//通過查看EventFetcher我們看到他繼承了Thread,所以他是一個線程

// Start the map-output fetcher threads

boolean isLocal = localMapFiles != null;

final int numFetchers = isLocal ? 1 :

jobConf.getInt(MRJobConfig.SHUFFLE_PARALLEL_COPIES, 5);

Fetcher[] fetchers = new Fetcher[numFetchers];

//創建了一個線程池

if (isLocal) {

//如果Mapper和Reducer在同一臺機器上,就在本地fetche

fetchers[0] = new LocalFetcher(jobConf, reduceId, scheduler,

merger, reporter, metrics, this, reduceTask.getShuffleSecret(),

localMapFiles);

//LocalFetcher是對Fetcher的擴展,也是線程。

fetchers[0].start();//本地Fecher只有一個

} else {

//Mapper集合Reducer不在同一個機器上,需要跨多個節點Fecher

for (int i=0; i < numFetchers; ++i) {

//啟動所有的Fecher

fetchers[i] = new Fetcher(jobConf, reduceId, scheduler, merger,

reporter, metrics, this,

reduceTask.getShuffleSecret());

//創建Fecher線程

fetchers[i].start();

//跨節點的Fecher需要好多個,都需要開啟

}

}

// Wait for shuffle to complete successfully

while (!scheduler.waitUntilDone(PROGRESS_FREQUENCY)) {

reporter.progress();

//等待所有的Fecher都完成,如果有超時情況就報告進度

synchronized (this) {

if (throwable != null) {

throw new ShuffleError("error in shuffle in " + throwingThreadName,

throwable);

}

}

}

// Stop the event-fetcher thread

eventFetcher.shutDown();

//關閉eventFetcher,代表shuffle操作完成,所有的MapTask的數據都拷貝過來了

// Stop the map-output fetcher threads

for (Fetcher fetcher : fetchers) {

fetcher.shutDown();//關閉所有的fetcher。

}

// stop the scheduler

scheduler.close();

//也不需要shuffle的調度,所以關閉

copyPhase.complete(); // copy is already complete

//文件復制階段結束

以下就是Reduce階段的MergeSort了

taskStatus.setPhase(TaskStatus.Phase.SORT);

//完成排序

reduceTask.statusUpdate(umbilical);

//通過umbilical向MRAppMaster匯報,更新狀態

// Finish the on-going merges...

RawKeyValueIterator kvIter = null;

try {

kvIter = merger.close();

//合并和排序,完成后返回一個隊列kvIter 。

} catch (Throwable e) {

throw new ShuffleError("Error while doing final merge " , e);

}

// Sanity check

synchronized (this) {

if (throwable != null) {

throw new ShuffleError("error in shuffle in " + throwingThreadName,

throwable);

}

}

return kvIter;

}

數據從MapTask轉移到ReduceTask就兩種方式,一MapTask送,二ReduceTask取,hadoop采用的是第二種方式,就是文件的復制。在Shuffle進入run之前,RduceTask.run調用過他的init函數shuffleConsumerPlugin.init(shuffleContext),在init里創建了scheduler和用于合并排序的merge,進入run后又創建了EventFetcher線程和若干個Fetcher線程。Fetcher的作用就是拿取,向MapTask節點提取數據。但是我們要清楚EventFetcher雖然也是Fetcher,但是提取的是event,不是數據本身。我們可以認為它只是對Fetcher過程的一個事件的控制。

Fetcher線程的數量也不一定,Uber模式下,MapTask和ReduceTask在同一個節點上,并且只有一個MapTask,所以只有一個Fetcher就能夠完成,而且這個Fetcher是localFetcher。如果不是Uber模式可能會有很多MapTask并且一般和ReduceTask不在同一個節點。這時Fetcher的數量可以進行配置,默認有5個。數組fetchers就相當于Fetcher的線程池。

創建了EventFetcher和Fetcher線程池后,進入了while循環,但是while循環什么都不做,一直等待,所以實際的操作都是在線程完成的,也就是通過EventFetcher和若干的Fetcher完成。EventFetcher起到了非常關鍵的樞紐的作用。

我們查看EventFetcher的源代碼摘要,我們提取關鍵的東西:

class EventFetcher extends Thread {

private final TaskAttemptID reduce;

private final TaskUmbilicalProtocol umbilical;

private final ShuffleScheduler scheduler;

private final int maxEventsToFetch;

public void run() {

int failures = 0;

LOG.info(reduce + " Thread started: " + getName());

try {

while (!stopped && !Thread.currentThread().isInterrupted()) {//線程沒有被打斷

try {

int numNewMaps = getMapCompletionEvents();

//獲取Map的完成的事件,接著我們看getMapCompletionEvents源代碼:

protected int getMapCompletionEvents()

throws IOException, InterruptedException {

int numNewMaps = 0;

TaskCompletionEvent events[] = null;

do {

MapTaskCompletionEventsUpdate update =

umbilical.getMapCompletionEvents(

(org.apache.hadoop.mapred.JobID)reduce.getJobID(),

fromEventIdx,

maxEventsToFetch,

(org.apache.hadoop.mapred.TaskAttemptID)reduce);

//匯報umbilical從MRAppMaster獲取Map完成的時間的報告

events = update.getMapTaskCompletionEvents();

//獲取有關具體的MapTask結束運行的情況

LOG.debug("Got " + events.length + " map completion events from " +

fromEventIdx);

assert !update.shouldReset() : "Unexpected legacy state";

//做了一個斷言 獲取更多大數據視頻資料請加QQ群:947967114

// Update the last seen event ID

fromEventIdx += events.length;

// Process the TaskCompletionEvents:

// 1. Save the SUCCEEDED maps in knownOutputs to fetch the outputs.

// 2. Save the OBSOLETE/FAILED/KILLED maps in obsoleteOutputs to stop

// fetching from those maps.

// 3. Remove TIPFAILED maps from neededOutputs since we don't need their

// outputs at all.

for (TaskCompletionEvent event : events) {

//對于獲取的每個事件的報告

scheduler.resolve(event);

//這里使用了ShuffleSchedullerImpl.resolve函數,源代碼如下:

public void resolve(TaskCompletionEvent event) {

switch (event.getTaskStatus()) {

case SUCCEEDED://如果成功

URI u = getBaseURI(reduceId, event.getTaskTrackerHttp());//獲取其URI

addKnownMapOutput(u.getHost() + ":" + u.getPort(),

u.toString(),

event.getTaskAttemptId());

//記錄這個MapTask的節點主機記錄下來,供Fetcher使用,getBaseURI的源代碼:

static URI getBaseURI(TaskAttemptID reduceId, String url) {

StringBuffer baseUrl = new StringBuffer(url);

if (!url.endsWith("/")) {

baseUrl.append("/");

}

baseUrl.append("mapOutput?job=");

baseUrl.append(reduceId.getJobID());

baseUrl.append("&reduce=");

baseUrl.append(reduceId.getTaskID().getId());

baseUrl.append("&map=");

URI u = URI.create(baseUrl.toString());

return u;

獲取各種信息,然后添加都URI對象中。

}

回到源代碼

maxMapRuntime = Math.max(maxMapRuntime, event.getTaskRunTime());

//最大的嘗試時間

break;

case FAILED:

case KILLED:

case OBSOLETE://如果MapTask運行失敗

obsoleteMapOutput(event.getTaskAttemptId());//獲取TaskId

LOG.info("Ignoring obsolete output of " + event.getTaskStatus() +

" map-task: '" + event.getTaskAttemptId() + "'");//寫日志

break;

case TIPFAILED://如果失敗

tipFailed(event.getTaskAttemptId().getTaskID());

LOG.info("Ignoring output of failed map TIP: '" +

event.getTaskAttemptId() + "'");//寫日志

break;

}

}

回到源代碼

if (TaskCompletionEvent.Status.SUCCEEDED == event.getTaskStatus()) {//如果事件成功

++numNewMaps;//增加map數量

}

}

} while (events.length == maxEventsToFetch);

return numNewMaps;

}

回到源代碼

failures = 0;

if (numNewMaps > 0) {

LOG.info(reduce + ": " + "Got " + numNewMaps + " new map-outputs");

}

LOG.debug("GetMapEventsThread about to sleep for " + SLEEP_TIME);

if (!Thread.currentThread().isInterrupted()) {

Thread.sleep(SLEEP_TIME);

}

} catch (InterruptedException e) {

LOG.info("EventFetcher is interrupted.. Returning");

return;

} catch (IOException ie) {

LOG.info("Exception in getting events", ie);

// check to see whether to abort

if (++failures >= MAX_RETRIES) {

throw new IOException("too many failures downloading events", ie);//失敗數量大于重試的數量

}

// sleep for a bit

if (!Thread.currentThread().isInterrupted()) {

Thread.sleep(RETRY_PERIOD);

}

}

}

} catch (InterruptedException e) {

return;

} catch (Throwable t) {

exceptionReporter.reportException(t);

return;

}

}

MapTask和ReduceTask沒有直接的關系,MapTask不知道ReduceTask在哪些節點上,它只是把進度的時間報告給MRAppMaster。ReduceTask通過“臍帶”執行getMapCompletionEvents操作想MRAppMaster獲取MapTask結束運行的時間報告。有個別的MapTask可能會失敗,但是絕大多數都會成功,只要成功的就通過Fetcher去索取輸出數據,這個信息就是通過shcheduler完成的也就是ShuffleSchedulerImpl對象,ShuffleSchedulerImpl對象并不多,只是個普通的對象。

fetchers就像線程池,里面有若干線程(默認有5個),這些線程等待EventFetcher的通知,一旦有MapTask完成就前往提取數據。

獲取更多大數據視頻資料請加QQ群:947967114
大數據 : Hadoop reduce階段

我們看Fetcher線程類的run方法:

public void run() {

try {

while (!stopped && !Thread.currentThread().isInterrupted()) {

MapHost host = null;

try {

// If merge is on, block

merger.waitForResource();

// Get a host to shuffle from

host = scheduler.getHost();

//從scheduler獲取一個已經成功完成的MapTask的節點。

metrics.threadBusy();

//線程變成繁忙狀態

// Shuffle

copyFromHost(host);

//開始復制這個節點的數據

} finally {

if (host != null) {//maphost還有運行中的

scheduler.freeHost(host);

//狀態設置成空閑狀態,等待其完成。

metrics.threadFree();

}

}

}

} catch (InterruptedException ie) {

return;

} catch (Throwable t) {

exceptionReporter.reportException(t);

}

}

這里的重點是copyFromHost獲取數據的函數。

protected void copyFromHost(MapHost host) throws IOException {

// reset retryStartTime for a new host

//這是在ReduceTask的節點上運行的

retryStartTime = 0;

// Get completed maps on 'host'

List<TaskAttemptID> maps = scheduler.getMapsForHost(host);

//獲取目標節點上的MapTask集合。

// Sanity check to catch hosts with only 'OBSOLETE' maps,

// especially at the tail of large jobs

if (maps.size() == 0) {

return;//沒有完成的直接返回

}

if(LOG.isDebugEnabled()) {

LOG.debug("Fetcher " + id + " going to fetch from " + host + " for: "

  • maps);

}

// List of maps to be fetched yet

Set remaining = new HashSet(maps);

//已經完成、等待shuffle的MapTask集合。

// Construct the url and connect

DataInputStream input = null;

URL url = getMapOutputURL(host, maps);

//生成MapTask所在節點的URL,下面要看getMapOutputURL源碼:

private URL getMapOutputURL(MapHost host, Collection maps

) throws MalformedURLException {

// Get the base url

StringBuffer url = new StringBuffer(host.getBaseUrl());

boolean first = true;

for (TaskAttemptID mapId : maps) {

if (!first) {

url.append(",");

}

url.append(mapId);//在URL后面加上mapid

first = false;

}

LOG.debug("MapOutput URL for " + host + " -> " + url.toString());

//寫日志

return new URL(url.toString());

//返回URL

}

回到主代碼:

try {

setupConnectionsWithRetry(host, remaining, url);

//和對方主機建立HTTP連接,setupConnectionsWithRetry使用了openConnectionWithRetry函數打開鏈接。

openConnectionWithRetry(host, remaining, url);

這段源代碼有使用了openConnection(url);方式,繼續查看。

如下是鏈接的主要過程:

protected synchronized void openConnection(URL url)

throws IOException {

HttpURLConnection conn = (HttpURLConnection) url.openConnection();

//使用的是HTTPURL進行連接

if (sslShuffle) {//如果是有信任證書的

HttpsURLConnection httpsConn = (HttpsURLConnection) conn;

//強轉conn類型

try {

httpsConn.setSSLSocketFactory(sslFactory.createSSLSocketFactory());//添加一個證書socket的工廠

} catch (GeneralSecurityException ex) {

throw new IOException(ex);

}

httpsConn.setHostnameVerifier(sslFactory.getHostnameVerifier());

}

connection = conn;

}

在setupConnectionsWithRetry中繼續寫到:

setupShuffleConnection(encHash);

//建立了Shuffle鏈接

connect(connection, connectionTimeout);

// verify that the thread wasn't stopped during calls to connect

if (stopped) {

return;

}

verifyConnection(url, msgToEncode, encHash);

}

//至此連接通過。

if (stopped) {

abortConnect(host, remaining);

//這里邊是關閉連接,可以點進去看一下,滿足列表和等待的兩個條件

return;

}

} catch (IOException ie) {

boolean connectExcpt = ie instanceof ConnectException;

ioErrs.increment(1);

LOG.warn("Failed to connect to " + host + " with " + remaining.size() +

" map outputs", ie);

回到主代碼

input = new DataInputStream(connection.getInputStream());

//實例一個輸入流對象。

try {

// Loop through available map-outputs and fetch them

// On any error, faildTasks is not null and we exit

// after putting back the remaining maps to the

// yet_to_be_fetched list and marking the failed tasks.

TaskAttemptID[] failedTasks = null;

while (!remaining.isEmpty() && failedTasks == null) {

//如果需要fetcher的列表不空,并且失敗的task數量沒有

try {

failedTasks = copyMapOutput(host, input, remaining, fetchRetryEnabled);

//復制數據出來copyMapOutput的源代碼如下:

try {

ShuffleHeader header = new ShuffleHeader();

header.readFields(input);

mapId = TaskAttemptID.forName(header.mapId);

//獲取mapID

compressedLength = header.compressedLength;

decompressedLength = header.uncompressedLength;

forReduce = header.forReduce;

} catch (IllegalArgumentException e) {

badIdErrs.increment(1);

LOG.warn("Invalid map id ", e);

//Don't know which one was bad, so consider all of them as bad

return remaining.toArray(new TaskAttemptID[remaining.size()]);

}

InputStream is = input;

is = CryptoUtils.wrapIfNecessary(jobConf, is, compressedLength);

compressedLength -= CryptoUtils.cryptoPadding(jobConf);

decompressedLength -= CryptoUtils.cryptoPadding(jobConf);

//如果需要解壓或解密

// Do some basic sanity verification

if (!verifySanity(compressedLength, decompressedLength, forReduce,

remaining, mapId)) {

return new TaskAttemptID[] {mapId};

}

if(LOG.isDebugEnabled()) {

LOG.debug("header: " + mapId + ", len: " + compressedLength +

", decomp len: " + decompressedLength);

}

try {

mapOutput = merger.reserve(mapId, decompressedLength, id);

//為merge預留一個MapOutput:是內存還是磁盤上。

} catch (IOException ioe) {

// kill this reduce attempt

ioErrs.increment(1);

scheduler.reportLocalError(ioe);

//報告錯誤

return EMPTY_ATTEMPT_ID_ARRAY;

}

// Check if we can shuffle now ...

if (mapOutput == null) {

LOG.info("fetcher#" + id + " - MergeManager returned status WAIT ...");

//Not an error but wait to process data.

return EMPTY_ATTEMPT_ID_ARRAY;

}

// The codec for lz0,lz4,snappy,bz2,etc. throw java.lang.InternalError

// on decompression failures. Catching and re-throwing as IOException

// to allow fetch failure logic to be processed

try {

// Go!

LOG.info("fetcher#" + id + " about to shuffle output of map "

  • mapOutput.getMapId() + " decomp: " + decompressedLength

  • " len: " + compressedLength + " to " + mapOutput.getDescription());

mapOutput.shuffle(host, is, compressedLength, decompressedLength,

metrics, reporter);

//跨節點把Mapper的文件內容拷貝到reduce的內存或者磁盤上。

} catch (java.lang.InternalError e) {

LOG.warn("Failed to shuffle for fetcher#"+id, e);

throw new IOException(e);

}

// Inform the shuffle scheduler

long endTime = Time.monotonicNow();

// Reset retryStartTime as map task make progress if retried before.

retryStartTime = 0;

scheduler.copySucceeded(mapId, host, compressedLength,

startTime, endTime, mapOutput);

//告訴調度器完成了一個節點的Map輸出的文件拷貝。

remaining.remove(mapId);

//這個MapTask的輸出已經shuffle完畢

metrics.successFetch();

return null;后面的異常失敗信息我們不管。

這里的mapOutput是用來容納MapTask輸出文件的存儲空間,根據輸出文件的內容大小和內存的情況,可以是內存的Output也可以是DiskOutput。 如果是內存需要預約,因為不止一個Fetcher。我們以InMemoryMapOutput為例。

代碼結構;

Fetcher.run-->copyFromHost-->copyMapOutput-->merger.reserve(MergeManagerImpl.reserve)-->InmemoryMapOutput.shuffle

public void shuffle(MapHost host, InputStream input,

long compressedLength, long decompressedLength,

ShuffleClientMetrics metrics,

Reporter reporter) throws IOException {

//跨節點從Mapper拷貝spill文件

IFileInputStream checksumIn =

new IFileInputStream(input, compressedLength, conf);

//校驗和的輸入流

input = checksumIn;

// Are map-outputs compressed?

if (codec != null) {

//如果涉及到了壓縮

decompressor.reset();

//重啟解壓器

input = codec.createInputStream(input, decompressor);

//加了解壓器的輸入流

}

try {

IOUtils.readFully(input, memory, 0, memory.length);

//從Mapper方把特定的Partition數據讀入Reducer的內存緩沖區。

metrics.inputBytes(memory.length);

reporter.progress();//匯報進度

LOG.info("Read " + memory.length + " bytes from map-output for " +

getMapId());

/**

  • We've gotten the amount of data we were expecting. Verify the

  • decompressor has nothing more to offer. This action also forces the

  • decompressor to read any trailing bytes that weren't critical

  • for decompression, which is necessary to keep the stream

  • in sync.

*/

if (input.read() >= 0 ) {

throw new IOException("Unexpected extra bytes from input stream for " +

getMapId());

}

} catch (IOException ioe) {

// Close the streams

IOUtils.cleanup(LOG, input);

// Re-throw

throw ioe;

} finally {

CodecPool.returnDecompressor(decompressor);

//釋放解壓器

}

}

從對方把spill文件中屬于本partition數據復制過來,回到copyFromHost中,通過scheduler.copySuccessed告知scheduler,并把這個MapTask的ID從remaining集合中刪除,進入下一個循環,復制下一個MapTask數據。直到把所有的屬于本Partition的數據都復制過來。

以上是Reducer端Fetcher的過程,它向Mapper端發送HTTP GET請求,下載文件。在MapTask就有一個與之對應的Server,這個網絡協議的源代碼不做深究,課下有興趣自己研究。 獲取更多大數據視頻資料請加QQ群:947967114

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

连平县| 故城县| 泰兴市| 玛沁县| 贵德县| 泽普县| 四会市| 绍兴县| 磐石市| 宜川县| 荥阳市| 海伦市| 万宁市| 修水县| 呈贡县| 安新县| 上栗县| 丽江市| 肥乡县| 连云港市| 昭平县| 兴仁县| 台中市| 霍城县| 偏关县| 安图县| 林甸县| 乌海市| 二连浩特市| 安远县| 丹东市| 乌鲁木齐市| 介休市| 峨眉山市| 商丘市| 涟水县| 平凉市| 兰西县| 德阳市| 阿拉善右旗| 印江|