亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Spark2.3.1+Kafka0.9使用Direct模式消費信息異常怎么辦

發布時間:2021-12-15 11:02:45 來源:億速云 閱讀:184 作者:柒染 欄目:大數據

Spark2.3.1+Kafka0.9使用Direct模式消費信息異常怎么辦,相信很多沒有經驗的人對此束手無策,為此本文總結了問題出現的原因和解決方法,通過這篇文章希望你能解決這個問題。

Spark2.3.1+Kafka使用Direct模式消費信息

Maven依賴

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
    <version>2.3.1</version>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming_2.11</artifactId>
    <version>2.3.1</version>
</dependency>

2.3.1spark版本

Direct模式代碼

import kafka.serializer.StringDecoder
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

object Test {

  val zkQuorum = "mirrors.mucang.cn:2181"
  val groupId = "nginx-cg"
  val topic = Map("nginx-log" -> 1)

  val KAFKA_INTERVAL = 10

  case class NginxInof(domain: String, ip: String)

  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName("NginxLogAnalyze").setMaster("local[*]")
    val sparkContext = new SparkContext(sparkConf)

    val streamContext = new StreamingContext(sparkContext, Seconds(KAFKA_INTERVAL))

    val kafkaParam = Map[String, String](
      "bootstrap.servers" -> "xx.xx.cn:9092",
      "group.id" -> "nginx-cg",
      "auto.offset.reset" -> "largest"
    )

    val topic = Set("nginx-log")

    val kafkaStream = KafkaUtils.createDirectStream(streamContext, kafkaParam, topic)

    val counter = kafkaStream
      .map(_.toString().split(" "))
      .map(item => (item(0).split(",")(1) + "-" + item(2), 1))
      .reduceByKey((x, y) => (x + y))

    counter.foreachRDD(rdd => {
      rdd.foreach(println)
    })


    streamContext.start()
    streamContext.awaitTermination()

  }

}

largest 因為kafka版本過低不支持latest

異常信息

Caused by: java.lang.NoSuchMethodException: scala.runtime.Nothing$.<init>(kafka.utils.VerifiableProperties)
    at java.lang.Class.getConstructor0(Class.java:3082)
    at java.lang.Class.getConstructor(Class.java:1825)
    at org.apache.spark.streaming.kafka.KafkaRDD$KafkaRDDIterator.<init>(KafkaRDD.scala:153)
    at org.apache.spark.streaming.kafka.KafkaRDD.compute(KafkaRDD.scala:136)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
    at org.apache.spark.scheduler.Task.run(Task.scala:109)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
    ... 3 more

解決方案

在驗證kafka屬性時不能使用scala默認的類,需要指定kafka帶的類
createDirectStream[String, String, StringDecoder, StringDecoder]其中StringDecoder必須是kafka.serializer.StringDecoder

看完上述內容,你們掌握Spark2.3.1+Kafka0.9使用Direct模式消費信息異常怎么辦的方法了嗎?如果還想學到更多技能或想了解更多相關內容,歡迎關注億速云行業資訊頻道,感謝各位的閱讀!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

石棉县| 化州市| 会理县| 内乡县| 张家界市| 佛山市| 河南省| 乐昌市| 柳江县| 仁怀市| 肥东县| 天祝| 甘南县| 星座| 米林县| 西华县| 松原市| 六盘水市| 泰来县| 普宁市| 陆河县| 枣强县| 佛冈县| 灌南县| 玉溪市| 永康市| 凤台县| 泉州市| 黑山县| 卢龙县| 五指山市| 富阳市| 文成县| 大丰市| 襄城县| 望江县| 广德县| 三河市| 奎屯市| 泸州市| 汽车|