您好,登錄后才能下訂單哦!
這期內容當中小編將會給大家帶來有關如何用Python爬取馬蜂窩的出行數據,文章內容豐富且以專業的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。
正值火辣的暑假,朋友圈已經被大家的旅行足跡刷屏了,真的十分驚嘆于那些把全國所有省基本走遍的朋友們。與此同時,也就萌生了寫篇旅行相關的內容,本次數據來源于一個對于爬蟲十分友好的旅行攻略類網站:螞蜂窩。
一、獲得城市編號
螞蜂窩中的所有城市、景點以及其他的一些信息都有一個專屬的5位數字編號,我們***步要做的就是獲取城市(直轄市+地級市)的編號,進行后續的進一步分析。
以上兩個頁面就是我們的城市編碼來源。需要首先從目的地頁面獲得各省編碼,之后進入各省城市列表獲得編碼。
過程中需要Selenium進行動態數據爬取,部分代碼如下:
def find_cat_url(url):
headers = {'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:23.0) Gecko/20100101 Firefox/23.0'}
req=request.Request(url,headers=headers)
html=urlopen(req)
bsObj=BeautifulSoup(html.read(),"html.parser")
bs = bsObj.find('div',attrs={'class':'hot-list clearfix'}).find_all('dt')
cat_url = []
cat_name = []
for i in range(0,len(bs)):
for j in range(0,len(bs[i].find_all('a'))):
cat_url.append(bs[i].find_all('a')[j].attrs['href'])
cat_name.append(bs[i].find_all('a')[j].text)
cat_url = ['http://www.mafengwo.cn'+cat_url[i] for i in range(0,len(cat_url))]
return cat_url
def find_city_url(url_list):
city_name_list = []
city_url_list = []
for i in range(0,len(url_list)):
driver = webdriver.Chrome()
driver.maximize_window()
url = url_list[i].replace('travel-scenic-spot/mafengwo','mdd/citylist')
driver.get(url)
while True:
try:
time.sleep(2)
bs = BeautifulSoup(driver.page_source,'html.parser')
url_set = bs.find_all('a',attrs={'data-type':'目的地'})
city_name_list = city_name_list +[url_set[i].text.replace('\n','').split()[0] for i in range(0,len(url_set))]
city_url_list = city_url_list+[url_set[i].attrs['data-id'] for i in range(0,len(url_set))]
js="var q=document.documentElement.scrollTop=800"
driver.execute_script(js)
time.sleep(2)
driver.find_element_by_class_name('pg-next').click()
except:
break
driver.close()
return city_name_list,city_url_list
url = 'http://www.mafengwo.cn/mdd/'
url_list = find_cat_url(url)
city_name_list,city_url_list=find_city_url(url_list)
city = pd.DataFrame({'city':city_name_list,'id':city_url_list})
二、獲得城市信息
城市數據分別從以下幾個頁面獲取:
(a)小吃頁面
(b)景點頁面
(c)標簽頁面
我們將每個城市獲取數據的過程封裝成函數,每次傳入之前獲得的城市編碼,部分代碼如下:
def get_city_info(city_name,city_code):
this_city_base = get_city_base(city_name,city_code)
this_city_jd = get_city_jd(city_name,city_code)
this_city_jd['city_name'] = city_name
this_city_jd['total_city_yj'] = this_city_base['total_city_yj']
try:
this_city_food = get_city_food(city_name,city_code)
this_city_food['city_name'] = city_name
this_city_food['total_city_yj'] = this_city_base['total_city_yj']
except:
this_city_food=pd.DataFrame()
return this_city_base,this_city_food,this_city_jd
def get_city_base(city_name,city_code):
url = 'http://www.mafengwo.cn/xc/'+str(city_code)+'/'
bsObj = get_static_url_content(url)
node = bsObj.find('div',{'class':'m-tags'}).find('div',{'class':'bd'}).find_all('a')
tag = [node[i].text.split()[0] for i in range(0,len(node))]
tag_node = bsObj.find('div',{'class':'m-tags'}).find('div',{'class':'bd'}).find_all('em')
tag_count = [int(k.text) for k in tag_node]
par = [k.attrs['href'][1:3] for k in node]
tag_all_count = sum([int(tag_count[i]) for i in range(0,len(tag_count))])
tag_jd_count = sum([int(tag_count[i]) for i in range(0,len(tag_count)) if par[i]=='jd'])
tag_cy_count = sum([int(tag_count[i]) for i in range(0,len(tag_count)) if par[i]=='cy'])
tag_gw_yl_count = sum([int(tag_count[i]) for i in range(0,len(tag_count)) if par[i] in ['gw','yl']])
url = 'http://www.mafengwo.cn/yj/'+str(city_code)+'/2-0-1.html '
bsObj = get_static_url_content(url)
total_city_yj = int(bsObj.find('span',{'class':'count'}).find_all('span')[1].text)
return {'city_name':city_name,'tag_all_count':tag_all_count,'tag_jd_count':tag_jd_count,
'tag_cy_count':tag_cy_count,'tag_gw_yl_count':tag_gw_yl_count,
'total_city_yj':total_city_yj}
def get_city_food(city_name,city_code):
url = 'http://www.mafengwo.cn/cy/'+str(city_code)+'/gonglve.html'
bsObj = get_static_url_content(url)
food=[k.text for k in bsObj.find('ol',{'class':'list-rank'}).find_all('h4')]
food_count=[int(k.text) for k in bsObj.find('ol',{'class':'list-rank'}).find_all('span',{'class':'trend'})]
return pd.DataFrame({'food':food[0:len(food_count)],'food_count':food_count})
def get_city_jd(city_name,city_code):
url = 'http://www.mafengwo.cn/jd/'+str(city_code)+'/gonglve.html'
bsObj = get_static_url_content(url)
node=bsObj.find('div',{'class':'row-top5'}).find_all('h4')
jd = [k.text.split('\n')[2] for k in node]
node=bsObj.find_all('span',{'class':'rev-total'})
jd_count=[int(k.text.replace(' 條點評','')) for k in node]
return pd.DataFrame({'jd':jd[0:len(jd_count)],'jd_count':jd_count})
三、數據分析
PART1:城市數據
首先我們看一下游記數量最多的***0城市:
游記數量***0數量基本上與我們日常所了解的熱門城市相符,我們進一步根據各個城市游記數量獲得全國旅行目的地熱力圖:
看到這里,是不是有種似曾相識的感覺,如果你在朋友圈曬的足跡圖與這幅圖很相符,那么說明螞蜂窩的數據與你不謀而合。
***我們看一下大家對于各個城市的印象是如何的,方法就是提取標簽中的屬性,我們將屬性分為了休閑、飲食、景點三組,分別看一下每一組屬性下大家印象最深的城市:
看來對于螞蜂窩的用戶來說,廈門給大家留下的印象是非常深的,不僅游記數量充足,并且能從中提取的有效標簽也非常多。重慶、西安、成都也無懸念地給吃貨們留下了非常深的印象,部分代碼如下:
bar1 = Bar("餐飲類標簽排名") bar1.add("餐飲類標簽分數", city_aggregate.sort_values('cy_point',0,False)['city_name'][0:15], city_aggregate.sort_values('cy_point',0,False)['cy_point'][0:15], is_splitline_show =False,xaxis_rotate=30) bar2 = Bar("景點類標簽排名",title_top="30%") bar2.add("景點類標簽分數", city_aggregate.sort_values('jd_point',0,False)['city_name'][0:15], city_aggregate.sort_values('jd_point',0,False)['jd_point'][0:15], legend_top="30%",is_splitline_show =False,xaxis_rotate=30) bar3 = Bar("休閑類標簽排名",title_top="67.5%") bar3.add("休閑類標簽分數", city_aggregate.sort_values('xx_point',0,False)['city_name'][0:15], city_aggregate.sort_values('xx_point',0,False)['xx_point'][0:15], legend_top="67.5%",is_splitline_show =False,xaxis_rotate=30) grid = Grid(height=800) grid.add(bar1, grid_bottom="75%") grid.add(bar2, grid_bottom="37.5%",grid_top="37.5%") grid.add(bar3, grid_top="75%") grid.render('城市分類標簽.html')
PART2:景點數據
我們提取了各個景點評論數,并與城市游記數量進行對比,分別得到景點評論的絕對值和相對值,并據此計算景點的人氣、代表性兩個分數,最終排名***5的景點如下:
螞蜂窩網友對于廈門真的是情有獨鐘,鼓浪嶼也成為了***人氣的景點,在城市代表性方面西塘古鎮和羊卓雍措位列前茅。暑假之際,如果擔心上排的景點人太多,不妨從下排的景點中挖掘那些人少景美的旅游地。
PART3:小吃數據
***我們看一下大家最關注的的與吃相關的數據,處理方法與PART2景點數據相似,我們分別看一下***人氣和***城市代表性的小吃。
出乎意料,螞蜂窩網友對廈門果真愛得深沉,讓沙茶面得以超過火鍋、烤鴨、肉夾饃躋身***人氣的小吃。
在城市代表性方面,海鮮的出場頻率非常高,這點與大(ben)家(ren)的認知也不謀而合,PART2與3的部分代碼如下:
bar1 = Bar("景點人氣排名") bar1.add("景點人氣分數", city_jd_com.sort_values('rq_point',0,False)['jd'][0:15], city_jd_com.sort_values('rq_point',0,False)['rq_point'][0:15], is_splitline_show =False,xaxis_rotate=30) bar2 = Bar("景點代表性排名",title_top="55%") bar2.add("景點代表性分數", city_jd_com.sort_values('db_point',0,False)['jd'][0:15], city_jd_com.sort_values('db_point',0,False)['db_point'][0:15], is_splitline_show =False,xaxis_rotate=30,legend_top="55%") grid=Grid(height=800) grid.add(bar1, grid_bottom="60%") grid.add(bar2, grid_top="60%",grid_bottom="10%") grid.render('景點排名.html')
上述就是小編為大家分享的如何用Python爬取馬蜂窩的出行數據了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關知識,歡迎關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。