亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

python線程池 ThreadPoolExecutor 的用法示例

發布時間:2020-10-14 07:24:22 來源:腳本之家 閱讀:231 作者:GoPython 欄目:開發技術

前言

從Python3.2開始,標準庫為我們提供了 concurrent.futures 模塊,它提供了 ThreadPoolExecutor (線程池)和ProcessPoolExecutor (進程池)兩個類。

相比 threading 等模塊,該模塊通過 submit 返回的是一個 future 對象,它是一個未來可期的對象,通過它可以獲悉線程的狀態主線程(或進程)中可以獲取某一個線程(進程)執行的狀態或者某一個任務執行的狀態及返回值:

主線程可以獲取某一個線程(或者任務的)的狀態,以及返回值。
當一個線程完成的時候,主線程能夠立即知道。
讓多線程和多進程的編碼接口一致。

線程池的基本使用

# coding: utf-8
from concurrent.futures import ThreadPoolExecutor
import time


def spider(page):
 time.sleep(page)
 print(f"crawl task{page} finished")
 return page

with ThreadPoolExecutor(max_workers=5) as t: # 創建一個最大容納數量為5的線程池
 task1 = t.submit(spider, 1)
 task2 = t.submit(spider, 2) # 通過submit提交執行的函數到線程池中
 task3 = t.submit(spider, 3)

 print(f"task1: {task1.done()}") # 通過done來判斷線程是否完成
 print(f"task2: {task2.done()}")
 print(f"task3: {task3.done()}")

 time.sleep(2.5)
 print(f"task1: {task1.done()}")
 print(f"task2: {task2.done()}")
 print(f"task3: {task3.done()}")
 print(task1.result()) # 通過result來獲取返回值

執行結果如下:

task1: False
task2: False
task3: False
crawl task1 finished
crawl task2 finished
task1: True
task2: True
task3: False
1
crawl task3 finished

1.使用 with 語句 ,通過 ThreadPoolExecutor 構造實例,同時傳入 max_workers 參數來設置線程池中最多能同時運行的線程數目。

2.使用 submit 函數來提交線程需要執行的任務到線程池中,并返回該任務的句柄(類似于文件、畫圖),注意 submit() 不是阻塞的,而是立即返回。

3.通過使用 done() 方法判斷該任務是否結束。上面的例子可以看出,提交任務后立即判斷任務狀態,顯示四個任務都未完成。在延時2.5后,task1 和 task2 執行完畢,task3 仍在執行中。

4.使用 result() 方法可以獲取任務的返回值。

主要方法

  • wait

 wait(fs, timeout=None, return_when=ALL_COMPLETED)

wait 接受三個參數:
fs: 表示需要執行的序列
timeout: 等待的最大時間,如果超過這個時間即使線程未執行完成也將返回
return_when:表示wait返回結果的條件,默認為 ALL_COMPLETED 全部執行完成再返回

還是用上面那個例子來熟悉用法
示例:

from concurrent.futures import ThreadPoolExecutor, wait, FIRST_COMPLETED, ALL_COMPLETED
import time

def spider(page):
 time.sleep(page)
 print(f"crawl task{page} finished")
 return page

with ThreadPoolExecutor(max_workers=5) as t: 
 all_task = [t.submit(spider, page) for page in range(1, 5)]
 wait(all_task, return_when=FIRST_COMPLETED)
 print('finished')
 print(wait(all_task, timeout=2.5))

# 運行結果
crawl task1 finished
finished
crawl task2 finished
crawl task3 finished
DoneAndNotDoneFutures(done={<Future at 0x28c8710 state=finished returned int>, <Future at 0x2c2bfd0 state=finished returned int>, <Future at 0x2c1b7f0 state=finished returned int>}, not_done={<Future at 0x2c3a240 state=running>})
crawl task4 finished

1.代碼中返回的條件是:當完成第一個任務的時候,就停止等待,繼續主線程任務

2.由于設置了延時, 可以看到最后只有 task4 還在運行中

  • as_completed

上面雖然提供了判斷任務是否結束的方法,但是不能在主線程中一直判斷啊。最好的方法是當某個任務結束了,就給主線程返回結果,而不是一直判斷每個任務是否結束。
ThreadPoolExecutorThreadPoolExecutor 中 的 as_completed() 就是這樣一個方法,當子線程中的任務執行完后,直接用 result() 獲取返回結果

用法如下:

# coding: utf-8
from concurrent.futures import ThreadPoolExecutor, as_completed
import time


def spider(page):
 time.sleep(page)
 print(f"crawl task{page} finished")
 return page

def main():
 with ThreadPoolExecutor(max_workers=5) as t:
  obj_list = []
  for page in range(1, 5):
   obj = t.submit(spider, page)
   obj_list.append(obj)

  for future in as_completed(obj_list):
   data = future.result()
   print(f"main: {data}")

# 執行結果
crawl task1 finished
main: 1
crawl task2 finished
main: 2
crawl task3 finished
main: 3
crawl task4 finished
main: 4

as_completed() 方法是一個生成器,在沒有任務完成的時候,會一直阻塞,除非設置了 timeout。

當有某個任務完成的時候,會 yield 這個任務,就能執行 for 循環下面的語句,然后繼續阻塞住,循環到所有的任務結束。同時,先完成的任務會先返回給主線程。

  • map

map(fn, *iterables, timeout=None)

fn: 第一個參數 fn 是需要線程執行的函數;
iterables:第二個參數接受一個可迭代對象;
timeout: 第三個參數 timeout 跟 wait() 的 timeout 一樣,但由于 map 是返回線程執行的結果,如果 timeout小于線程執行時間會拋異常 TimeoutError。

用法如下:

import time
from concurrent.futures import ThreadPoolExecutor

def spider(page):
 time.sleep(page)
 return page

start = time.time()
executor = ThreadPoolExecutor(max_workers=4)

i = 1
for result in executor.map(spider, [2, 3, 1, 4]):
 print("task{}:{}".format(i, result))
 i += 1

# 運行結果
task1:2
task2:3
task3:1
task4:4

使用 map 方法,無需提前使用 submit 方法,map 方法與 python 高階函數 map 的含義相同,都是將序列中的每個元素都執行同一個函數。

上面的代碼對列表中的每個元素都執行 spider() 函數,并分配各線程池。

可以看到執行結果與上面的 as_completed() 方法的結果不同,輸出順序和列表的順序相同,就算 1s 的任務先執行完成,也會先打印前面提交的任務返回的結果。

多線程實戰

以某網站為例,演示線程池和單線程兩種方式爬取的差異

# coding: utf-8
import requests
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
import json
from requests import adapters

from proxy import get_proxies

headers = {
 "Host": "splcgk.court.gov.cn",
 "Origin": "https://splcgk.court.gov.cn",
 "User-Agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36",
 "Referer": "https://splcgk.court.gov.cn/gzfwww/ktgg",
}
url = "https://splcgk.court.gov.cn/gzfwww/ktgglist?pageNo=1"

def spider(page):
 data = {
  "bt": "",
  "fydw": "",
  "pageNum": page,
 }
 for _ in range(5):
  try:
   response = requests.post(url, headers=headers, data=data, proxies=get_proxies())
   json_data = response.json()
  except (json.JSONDecodeError, adapters.SSLError):
   continue
  else:
   break
 else:
  return {}

 return json_data

def main():
 with ThreadPoolExecutor(max_workers=10) as t:
  obj_list = []
  begin = time.time()
  for page in range(1, 15):
   obj = t.submit(spider, page)
   obj_list.append(obj)

  for future in as_completed(obj_list):
   data = future.result()
   print(data)
   print('*' * 50)
  times = time.time() - begin
  print(times)

if __name__ == "__main__":
 main()

運行結果:

python線程池 ThreadPoolExecutor 的用法示例

單線程實戰

下面我們可以使用單線程來爬取,代碼基本和上面的一樣,加個單線程函數
代碼如下:

# coding: utf-8
import requests
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
import json
from requests import adapters

from proxy import get_proxies

headers = {
 "Host": "splcgk.court.gov.cn",
 "Origin": "https://splcgk.court.gov.cn",
 "User-Agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36",
 "Referer": "https://splcgk.court.gov.cn/gzfwww/ktgg",
}
url = "https://splcgk.court.gov.cn/gzfwww/ktgglist?pageNo=1"

def spider(page):
 data = {
  "bt": "",
  "fydw": "",
  "pageNum": page,
 }
 for _ in range(5):
  try:
   response = requests.post(url, headers=headers, data=data, proxies=get_proxies())
   json_data = response.json()
  except (json.JSONDecodeError, adapters.SSLError):
   continue
  else:
   break
 else:
  return {}

 return json_data

def single():
 begin = time.time()
 for page in range(1, 15):
  data = spider(page)
  print(data)
  print('*' * 50)

 times = time.time() - begin
 print(times)


if __name__ == "__main__":
 single()

運行結果:

python線程池 ThreadPoolExecutor 的用法示例

可以看到,總共花了 19 秒。真是肉眼可見的差距啊!如果數據量大的話,運行時間差距會更大!

以上就是python線程池 ThreadPoolExecutor 的用法示例的詳細內容,更多關于python線程池 ThreadPoolExecutor 的用法及實戰的資料請關注億速云其它相關文章!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

张家界市| 山阴县| 凤冈县| 裕民县| 承德县| 宁武县| 长治县| 扶风县| 郸城县| 盱眙县| 勐海县| 枝江市| 密云县| 南昌县| 星座| 竹山县| 沧源| 西乌珠穆沁旗| 噶尔县| 嘉兴市| 祁东县| 马关县| 塘沽区| 三都| 五原县| 和顺县| 五寨县| 丽水市| 逊克县| 饶阳县| 宁夏| 桃江县| 巫山县| 抚州市| 赤峰市| 沿河| 兰考县| 郎溪县| 霍城县| 东至县| 安塞县|