您好,登錄后才能下訂單哦!
這篇文章主要介紹了Python如何實現模擬隨機游走圖形效果,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。
具體如下:
在python中,可以利用數組操作來模擬隨機游走。
下面是一個單一的200步隨機游走的例子,從0開始,步長為1和-1,且以相等的概率出現。純Python方式實現,使用了內建的 random 模塊:
# 隨機游走 import matplotlib.pyplot as plt import random position = 0 walk = [position] steps = 200 for i in range(steps): step = 1 if random.randint(0, 1) else -1 position += step walk.append(position) fig = plt.figure() plt.title("www.jb51.net") ax = fig.add_subplot(111) ax.plot(walk) plt.show()
第二種方式:簡單的把隨機步長累積起來并且可以可以使用一個數組表達式來計算。因此,我用 np.random 模塊去200次硬幣翻轉,設置它們為1和-1,并計算累計和:
# 隨機游走 import matplotlib.pyplot as plt import numpy as np nsteps = 200 draws = np.random.randint(0, 2, size=nsteps) steps = np.where(draws > 0, 1, -1) walk = steps.cumsum() fig = plt.figure() plt.title("www.jb51.net") ax = fig.add_subplot(111) ax.plot(walk) plt.show()
一次模擬多個隨機游走
# 隨機游走 import matplotlib.pyplot as plt import numpy as np nwalks = 5 nsteps = 200 draws = np.random.randint(0, 2, size=(nwalks, nsteps)) # 0 or 1 steps = np.where(draws > 0, 1, -1) walks = steps.cumsum(1) fig = plt.figure() plt.title("www.jb51.net") ax = fig.add_subplot(111) for i in range(nwalks): ax.plot(walks[i]) plt.show()
當然,還可以大膽的試驗其它的分布的步長,而不是相等大小的硬幣翻轉。你只需要使用一個不同的隨機數生成函數,如 normal 來產生相同均值和標準偏差的正態分布:
steps = np.random.normal(loc=0, scale=0.25, size=(nwalks, nsteps))
感謝你能夠認真閱讀完這篇文章,希望小編分享的“Python如何實現模擬隨機游走圖形效果”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,更多相關知識等著你來學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。