您好,登錄后才能下訂單哦!
小編給大家分享一下如何使用Python實現的微信好友數據分析功能,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!
具體如下:
這里主要利用python對個人微信好友進行分析并把結果輸出到一個html文檔當中,主要用到的python包為itchat,pandas,pyecharts等
1、安裝itchat 微信的python sdk,用來獲取個人好友關系。獲取的代碼 如下:
import itchat import pandas as pd from pyecharts import Geo, Bar itchat.login() friends = itchat.get_friends(update=True)[0:] def User2dict(User): User_dict = {} User_dict["NickName"] = User["NickName"] if User["NickName"] else "NaN" User_dict["City"] = User["City"] if User["City"] else "NaN" User_dict["Sex"] = User["Sex"] if User["Sex"] else 0 User_dict["Signature"] = User["Signature"] if User["Signature"] else "NaN" User_dict["Province"] = User["Province"] if User["Province"] else "NaN" return User_dict friends_list = [User2dict(i) for i in friends] data = pd.DataFrame(friends_list) data.to_csv('wechat_data.csv', index=True)
2、對獲取到的數據進行分析。
主要分析了男女比例,以及好友所在城市分布,并且在地圖上面展示了微信好友的分布情況。另外其他的數據讀者可以自己去分析,這里只是提供一個引導而已。
import pandas as pd from pyecharts import Geo, Bar def Cal_mVw(data): result = {} for i in data: if i == 1: result["man"] = result.get("man", 0) + 1 elif i == 2: result["woman"] = result.get("woman", 0) + 1 else: result["unknown"] = result.get("nunknown", 0) + 1 return result def count_city(data): result = {} for i in data: if data is not "NaN" or data is not "nan": result[i] = result.get(i, 0) + 1 return result data1 = pd.read_csv('wechat_data.csv', encoding='GBK') manVSwoman=Cal_mVw(data1["Sex"]) #print(manVSwoman) bar = Bar("個人微信好友男女比例") bar.add("男女人數", ["男", "女", "不詳"], [139, 75, 1]) bar.render() city=count_city(data1["City"]) geo = Geo("微信好友分布", "", title_color="#fff", title_pos="center", width=1200, height=600, background_color='#404a59') #attr, value = geo.cast(city) geo.add("", city.keys(), city.values(), visual_range=[0, 30], visual_text_color="#fff", symbol_size=15, is_visualmap=True) geo.show_config() geo.render()
男女比例畫出來的圖如下所示
獲取到的好友分布情況如下圖所示:
以上是“如何使用Python實現的微信好友數據分析功能”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。