亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Python如何實現簡單線性回歸算法

發布時間:2021-04-09 11:30:06 來源:億速云 閱讀:241 作者:小新 欄目:開發技術

這篇文章主要介紹了Python如何實現簡單線性回歸算法,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。

具體如下:

用python實現R的線性模型(lm)中一元線性回歸的簡單方法,使用R的women示例數據,R的運行結果:

> summary(fit)
Call:
lm(formula = weight ~ height, data = women)
Residuals:
    Min      1Q  Median      3Q     Max
-1.7333 -1.1333 -0.3833  0.7417  3.1167
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -87.51667    5.93694  -14.74 1.71e-09 ***
height        3.45000    0.09114   37.85 1.09e-14 ***
---
Signif. codes:  0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1
Residual standard error: 1.525 on 13 degrees of freedom
Multiple R-squared:  0.991, Adjusted R-squared:  0.9903
F-statistic:  1433 on 1 and 13 DF,  p-value: 1.091e-14

python實現的功能包括:

  1. 計算pearson相關系數

  2. 使用最小二乘法計算回歸系數

  3. 計算擬合優度判定系數R2R2

  4. 計算估計標準誤差Se

  5. 計算顯著性檢驗的F和P值

import numpy as np
import scipy.stats as ss
class Lm:
  """簡單一元線性模型,計算回歸系數、擬合優度的判定系數和
  估計標準誤差,顯著性水平"""
  def __init__(self, data_source, separator):
    self.beta = np.matrix(np.zeros(2))
    self.yhat = np.matrix(np.zeros(2))
    self.r2 = 0.0
    self.se = 0.0
    self.f = 0.0
    self.msr = 0.0
    self.mse = 0.0
    self.p = 0.0
    data_mat = np.genfromtxt(data_source, delimiter=separator)
    self.xarr = data_mat[:, :-1]
    self.yarr = data_mat[:, -1]
    self.ybar = np.mean(self.yarr)
    self.dfd = len(self.yarr) - 2 # 自由度n-2
    return
  # 計算協方差
  @staticmethod
  def cov_custom(x, y):
    result = sum((x - np.mean(x)) * (y - np.mean(y))) / (len(x) - 1)
    return result
  # 計算相關系數
  @staticmethod
  def corr_custom(x, y):
    return Lm.cov_custom(x, y) / (np.std(x, ddof=1) * np.std(y, ddof=1))
  # 計算回歸系數
  def simple_regression(self):
    xmat = np.mat(self.xarr)
    ymat = np.mat(self.yarr).T
    xtx = xmat.T * xmat
    if np.linalg.det(xtx) == 0.0:
      print('Can not resolve the problem')
      return
    self.beta = np.linalg.solve(xtx, xmat.T * ymat) # xtx.I * (xmat.T * ymat)
    self.yhat = (xmat * self.beta).flatten().A[0]
    return
  # 計算擬合優度的判定系數R方,即相關系數corr的平方
  def r_square(self):
    y = np.mat(self.yarr)
    ybar = np.mean(y)
    self.r2 = np.sum((self.yhat - ybar) ** 2) / np.sum((y.A - ybar) ** 2)
    return
  # 計算估計標準誤差
  def estimate_deviation(self):
    y = np.array(self.yarr)
    self.se = np.sqrt(np.sum((y - self.yhat) ** 2) / self.dfd)
    return
  # 顯著性檢驗F
  def sig_test(self):
    ybar = np.mean(self.yarr)
    self.msr = np.sum((self.yhat - ybar) ** 2)
    self.mse = np.sum((self.yarr - self.yhat) ** 2) / self.dfd
    self.f = self.msr / self.mse
    self.p = ss.f.sf(self.f, 1, self.dfd)
    return
  def summary(self):
    self.simple_regression()
    corr_coe = Lm.corr_custom(self.xarr[:, -1], self.yarr)
    self.r_square()
    self.estimate_deviation()
    self.sig_test()
    print('The Pearson\'s correlation coefficient: %.3f' % corr_coe)
    print('The Regression Coefficient: %s' % self.beta.flatten().A[0])
    print('R square: %.3f' % self.r2)
    print('The standard error of estimate: %.3f' % self.se)
    print('F-statistic: %d on %s and %s DF, p-value: %.3e' % (self.f, 1, self.dfd, self.p))

python執行結果:

The Regression Coefficient: [-87.51666667   3.45      ]
R square: 0.991
The standard error of estimate: 1.525
F-statistic:  1433 on 1 and 13 DF,  p-value: 1.091e-14

其中求回歸系數時用矩陣轉置求逆再用numpy內置的解線性方程組的方法是最快的:

a = np.mat(women.xarr); b = np.mat(women.yarr).T
timeit (a.I * b)
99.9 µs ± 941 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
timeit ata.I * (a.T*b)
64.9 µs ± 717 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
timeit np.linalg.solve(ata, a.T*b)
15.1 µs ± 126 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

感謝你能夠認真閱讀完這篇文章,希望小編分享的“Python如何實現簡單線性回歸算法”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,更多相關知識等著你來學習!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

长岭县| 威信县| 喀什市| 双柏县| 商丘市| 清丰县| 新巴尔虎右旗| 通城县| 开远市| 民权县| 宜君县| 时尚| 福安市| 修文县| 镇原县| 双江| 河间市| 二连浩特市| 深圳市| 横山县| 昭苏县| 安达市| 上蔡县| 襄城县| 满洲里市| 余姚市| 静乐县| 漾濞| 浪卡子县| 罗城| 禹城市| 台南县| 武汉市| 玛曲县| 邓州市| 伊宁市| 五河县| 平陆县| 汕头市| 水城县| 嘉黎县|