亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Python如何實現線性回歸算法

發布時間:2021-04-09 11:29:25 來源:億速云 閱讀:288 作者:小新 欄目:開發技術

這篇文章主要介紹了Python如何實現線性回歸算法,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。

用python實現線性回歸

代碼:

#encoding:utf-8
"""
  Author:   njulpy
  Version:   1.0
  Data:   2018/04/09
  Project: Using Python to Implement LineRegression Algorithm
"""
import numpy as np
import pandas as pd
from numpy.linalg import inv
from numpy import dot
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn import linear_model
# 最小二乘法
def lms(x_train,y_train,x_test):
  theta_n = dot(dot(inv(dot(x_train.T, x_train)), x_train.T), y_train) # theta = (X'X)^(-1)X'Y
  #print(theta_n)
  y_pre = dot(x_test,theta_n)
  mse = np.average((y_test-y_pre)**2)
  #print(len(y_pre))
  #print(mse)
  return theta_n,y_pre,mse
#梯度下降算法
def train(x_train, y_train, num, alpha,m, n):
  beta = np.ones(n)
  for i in range(num):
    h = np.dot(x_train, beta)       # 計算預測值
    error = h - y_train.T         # 計算預測值與訓練集的差值
    delt = 2*alpha * np.dot(error, x_train)/m # 計算參數的梯度變化值
    beta = beta - delt
    #print('error', error)
  return beta
if __name__ == "__main__":
  iris = pd.read_csv('iris.csv')
  iris['Bias'] = float(1)
  x = iris[['Sepal.Width', 'Petal.Length', 'Petal.Width', 'Bias']]
  y = iris['Sepal.Length']
  x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=5)
  t = np.arange(len(x_test))
  m, n = np.shape(x_train)
  # Leastsquare
  theta_n, y_pre, mse = lms(x_train, y_train, x_test)
  # plt.plot(t, y_test, label='Test')
  # plt.plot(t, y_pre, label='Predict')
  # plt.show()
  # GradientDescent
  beta = train(x_train, y_train, 1000, 0.001, m, n)
  y_predict = np.dot(x_test, beta.T)
  # plt.plot(t, y_predict)
  # plt.plot(t, y_test)
  # plt.show()
  # sklearn
  regr = linear_model.LinearRegression()
  regr.fit(x_train, y_train)
  y_p = regr.predict(x_test)
  print(regr.coef_,theta_n,beta)
  l1,=plt.plot(t, y_predict)
  l2,=plt.plot(t, y_p)
  l3,=plt.plot(t, y_pre)
  l4,=plt.plot(t, y_test)
  plt.legend(handles=[l1, l2,l3,l4 ], labels=['GradientDescent', 'sklearn','Leastsquare','True'], loc='best')
  plt.show()

輸出結果

Python如何實現線性回歸算法

sklearn: [ 0.65368836  0.70955523 -0.54193454  0.        ]
 LeastSquare: [ 0.65368836  0.70955523 -0.54193454  1.84603897]
 GradientDescent: [ 0.98359285  0.29325906  0.60084232  1.006859  ]

感謝你能夠認真閱讀完這篇文章,希望小編分享的“Python如何實現線性回歸算法”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,更多相關知識等著你來學習!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

淅川县| 翼城县| 宁强县| 建昌县| 寻乌县| 唐河县| 巴林左旗| 紫金县| 贞丰县| 临武县| 新乡市| 慈溪市| 定西市| 阜阳市| 黔东| 天长市| 西贡区| 交口县| 三原县| 翁牛特旗| 崇阳县| 刚察县| 锡林郭勒盟| 上饶县| 鹤壁市| 益阳市| 云阳县| 凤山县| 瓮安县| 璧山县| 枣阳市| 将乐县| 固安县| 文化| 甘谷县| 峨眉山市| 梓潼县| 东城区| 镇巴县| 东乌珠穆沁旗| 丹东市|