您好,登錄后才能下訂單哦!
本文實例總結了Python常見的pandas用法。分享給大家供大家參考,具體如下:
import numpy as np import pandas as pd
s = pd.Series([1,3,6, np.nan, 44, 1]) #定義一個序列。 序列就是一列內容,每一行有一個index值 print(s) print(s.index)
0 1.0
1 3.0
2 6.0
3 NaN
4 44.0
5 1.0
dtype: float64
RangeIndex(start=0, stop=6, step=1)
dates = pd.date_range('20180101', periods=6) print(dates)
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
'2018-01-05', '2018-01-06'],
dtype='datetime64[ns]', freq='D')
df1 = pd.DataFrame(np.arange(12).reshape(3,4)) #定義DataFrame,可以看作一個有index和colunms的矩陣 print(df)
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
df2 = pd.DataFrame(np.random.randn(6,4), index=dates, columns=['a', 'b', 'c', 'd']) #np.random.randn(6,4)生成6行4列矩陣 print(df)
a b c d
2018-01-01 0.300675 1.769383 1.244406 -1.058294
2018-01-02 0.832666 2.216755 0.178716 -0.156828
2018-01-03 1.314190 -0.866199 0.836150 1.001026
2018-01-04 -1.671724 1.147406 -0.148676 -0.272555
2018-01-05 1.146664 2.022861 -1.833995 -0.627568
2018-01-06 -0.192242 1.517676 0.756707 0.058869
df = pd.DataFrame({'A':1.0, 'B':pd.Timestamp('20180101'), 'C':pd.Series(1, index=list(range(4)), dtype='float32'), 'D':np.array([3] * 4, dtype='int32'), 'E':pd.Categorical(['test', 'train', 'test', 'train']), 'F':'foo'}) #按照給出的逐列定義df print(df) print(df.dtypes)
A B C D E F
0 1.0 2018-01-01 1.0 3 test foo
1 1.0 2018-01-01 1.0 3 train foo
2 1.0 2018-01-01 1.0 3 test foo
3 1.0 2018-01-01 1.0 3 train foo
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
#df的行、列、值 print(df.index) print(df.columns) print(df.values)
Int64Index([0, 1, 2, 3], dtype='int64')
Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
[[1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'test' 'foo']
[1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'train' 'foo']
[1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'test' 'foo']
[1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'train' 'foo']]
print(df.describe()) #統計 print(df.T) #轉置
A C D
count 4.0 4.0 4.0
mean 1.0 1.0 3.0
std 0.0 0.0 0.0
min 1.0 1.0 3.0
25% 1.0 1.0 3.0
50% 1.0 1.0 3.0
75% 1.0 1.0 3.0
max 1.0 1.0 3.0
0 1 2 \
A 1 1 1
B 2018-01-01 00:00:00 2018-01-01 00:00:00 2018-01-01 00:00:00
C 1 1 1
D 3 3 3
E test train test
F foo foo foo
3
A 1
B 2018-01-01 00:00:00
C 1
D 3
E train
F foo
#df排序 print(df.sort_index(axis=1, ascending=False)) #根據索引值對各行進行排序(相當于重新排列各列的位置) print(df.sort_values(by='E')) #根據內容值對各列進行排序
F E D C B A
0 foo test 3 1.0 2018-01-01 1.0
1 foo train 3 1.0 2018-01-01 1.0
2 foo test 3 1.0 2018-01-01 1.0
3 foo train 3 1.0 2018-01-01 1.0
A B C D E F
0 1.0 2018-01-01 1.0 3 test foo
2 1.0 2018-01-01 1.0 3 test foo
1 1.0 2018-01-01 1.0 3 train foo
3 1.0 2018-01-01 1.0 3 train foo
indexes = pd.date_range('20180101', periods=6) df3 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes, columns=['A', 'B', 'C', 'D']) print(df3) print() #選擇column print(df3['A']) print() print(df3.A)
A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
2018-01-01 0
2018-01-02 4
2018-01-03 8
2018-01-04 12
2018-01-05 16
2018-01-06 20
Freq: D, Name: A, dtype: int32
2018-01-01 0
2018-01-02 4
2018-01-03 8
2018-01-04 12
2018-01-05 16
2018-01-06 20
Freq: D, Name: A, dtype: int32
A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
#選擇行, 類似limit語句 print(df3[0:0]) print() print(df3[0:3]) print() print(df3['20180103':'20180105'])
Empty DataFrame
Columns: [A, B, C, D]
Index: []
A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
A B C D
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
print(df3.loc['20180102']) #返回指定行構成的序列
A 4
B 5
C 6
D 7
Name: 2018-01-02 00:00:00, dtype: int32
print(df3.loc['20180103', ['A','C']]) #列篩選 print() print(df3.loc['20180103':'20180105', ['A','C']]) #子df,類似select A, C from df limit ... print() print(df3.loc[:, ['A', 'B']])
A 8
C 10
Name: 2018-01-03 00:00:00, dtype: int32
A C
2018-01-03 8 10
2018-01-04 12 14
2018-01-05 16 18
A B
2018-01-01 0 1
2018-01-02 4 5
2018-01-03 8 9
2018-01-04 12 13
2018-01-05 16 17
2018-01-06 20 21
print(df3);print() print(df3.iloc[1]);print() print(df3.iloc[1,1]);print() print(df3.iloc[:,1]);print() print(df3.iloc[0:3,1:3]);print() print(df3.iloc[[1,3,5],[0,2]]) #行可以不連續,limit做不到
A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
A 4
B 5
C 6
D 7
Name: 2018-01-02 00:00:00, dtype: int32
5
2018-01-01 1
2018-01-02 5
2018-01-03 9
2018-01-04 13
2018-01-05 17
2018-01-06 21
Freq: D, Name: B, dtype: int32
B C
2018-01-01 1 2
2018-01-02 5 6
2018-01-03 9 10
A C
2018-01-02 4 6
2018-01-04 12 14
2018-01-06 20 22
# print(df3.ix[:3, ['A', 'C']])\ print(df3);print() print(df3[df3.A >= 8]) #根據值進行條件過濾,類似where A >= 8條件語句
A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
A B C D
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
indexes1 = pd.date_range('20180101', periods=6) df4 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes1, columns=['A', 'B', 'C', 'D']) print(df4);print() #給某個元素賦值 df4.A[1] = 1111 df4.B['20180103'] = 2222 df4.iloc[3, 2] = 3333 df4.loc['20180105', 'D'] = 4444 print(df4);print() #范圍賦值 df4.B[df4.A < 10] = -1 print(df4);print() df4[df4.A < 10] = 0 print(df4);print()
A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
A B C D
2018-01-01 0 1 2 3
2018-01-02 1111 5 6 7
2018-01-03 8 2222 10 11
2018-01-04 12 13 3333 15
2018-01-05 16 17 18 4444
2018-01-06 20 21 22 23
A B C D
2018-01-01 0 -1 2 3
2018-01-02 1111 5 6 7
2018-01-03 8 -1 10 11
2018-01-04 12 13 3333 15
2018-01-05 16 17 18 4444
2018-01-06 20 21 22 23
A B C D
2018-01-01 0 0 0 0
2018-01-02 1111 5 6 7
2018-01-03 0 0 0 0
2018-01-04 12 13 3333 15
2018-01-05 16 17 18 4444
2018-01-06 20 21 22 23
indexes1 = pd.date_range('20180101', periods=6) df4 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes1, columns=['A', 'B', 'C', 'D']) print(df4);print() #添加一列 df4['E'] = np.NaN print(df4);print() #由于index沒對齊,原df沒有的行默認為NaN,類型為float64,多出的行丟棄 df4['F'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20180102', periods=6)) print(df4);print() print(df4.dtypes)
A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
A B C D E
2018-01-01 0 1 2 3 NaN
2018-01-02 4 5 6 7 NaN
2018-01-03 8 9 10 11 NaN
2018-01-04 12 13 14 15 NaN
2018-01-05 16 17 18 19 NaN
2018-01-06 20 21 22 23 NaN
A B C D E F
2018-01-01 0 1 2 3 NaN NaN
2018-01-02 4 5 6 7 NaN 1.0
2018-01-03 8 9 10 11 NaN 2.0
2018-01-04 12 13 14 15 NaN 3.0
2018-01-05 16 17 18 19 NaN 4.0
2018-01-06 20 21 22 23 NaN 5.0
A int32
B int32
C int32
D int32
E float64
F float64
dtype: object
df_t = pd.DataFrame(np.arange(24).reshape(6, 4), index=[1,2,3,4,5,6], columns=['A', 'B', 'C', 'D']) df_t.iloc[0, 1] = np.NaN df_t.iloc[1, 2] = np.NaN df = df_t.copy() print(df);print() print(df.dropna(axis=0, how='any'));print() df = df_t.copy() print(df.dropna(axis=1, how='any'));print() df = df_t.copy() df.C = np.NaN print(df);print() print(df.dropna(axis=1, how='all'));print()
A B C D
1 0 NaN 2.0 3
2 4 5.0 NaN 7
3 8 9.0 10.0 11
4 12 13.0 14.0 15
5 16 17.0 18.0 19
6 20 21.0 22.0 23
A B C D
3 8 9.0 10.0 11
4 12 13.0 14.0 15
5 16 17.0 18.0 19
6 20 21.0 22.0 23
A D
1 0 3
2 4 7
3 8 11
4 12 15
5 16 19
6 20 23
A B C D
1 0 NaN NaN 3
2 4 5.0 NaN 7
3 8 9.0 NaN 11
4 12 13.0 NaN 15
5 16 17.0 NaN 19
6 20 21.0 NaN 23
A B D
1 0 NaN 3
2 4 5.0 7
3 8 9.0 11
4 12 13.0 15
5 16 17.0 19
6 20 21.0 23
df = df_t.copy() print(df);print() print(df.isna());print() print(df.isnull().any());print() #isnull是isna別名,功能一樣 print(df.isnull().any(axis=1));print() print(np.any(df.isna() == True));print() print(df.fillna(value=0)) #將NaN賦值
A B C D
1 0 NaN 2.0 3
2 4 5.0 NaN 7
3 8 9.0 10.0 11
4 12 13.0 14.0 15
5 16 17.0 18.0 19
6 20 21.0 22.0 23
A B C D
1 False True False False
2 False False True False
3 False False False False
4 False False False False
5 False False False False
6 False False False False
A False
B True
C True
D False
dtype: bool
1 True
2 True
3 False
4 False
5 False
6 False
dtype: bool
True
A B C D
1 0 0.0 2.0 3
2 4 5.0 0.0 7
3 8 9.0 10.0 11
4 12 13.0 14.0 15
5 16 17.0 18.0 19
6 20 21.0 22.0 23
data = pd.read_csv('D:/pythonwp/test/student.csv') print(data) data.to_pickle('D:/pythonwp/test/student.pickle')
id name age gender
0 1 牛帥 23 Male
1 2 gyb 89 Male
2 3 xxs 27 Male
3 4 hey 24 Female
4 5 奧萊利赫本 66 Female
5 6 Jackson 61 Male
6 7 牛帥 23 Male
df0 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['A', 'B', 'C', 'D']) df1 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['A', 'B', 'C', 'D']) df2 = pd.DataFrame(np.ones((3, 4)) * 2, columns=['A', 'B', 'C', 'D']) print(df0); print() print(df1); print() print(df2); print() res = pd.concat([df0, df1, df2], axis = 0) print(res); print() res = pd.concat([df0, df1, df2], axis = 0, ignore_index=True) print(res)
A B C D
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
A B C D
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
A B C D
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
A B C D
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
A B C D
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
6 2.0 2.0 2.0 2.0
7 2.0 2.0 2.0 2.0
8 2.0 2.0 2.0 2.0
df0 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['A', 'B', 'C', 'D']) df1 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['E', 'F', 'C', 'D']) res = pd.concat([df0, df1], ignore_index=True) print(res);print() res = pd.concat([df0, df1], join='outer', ignore_index=True) print(res);print() res = pd.concat([df0, df1], join='inner',ignore_index=True) print(res);print()
A B C D E F
0 0.0 0.0 0.0 0.0 NaN NaN
1 0.0 0.0 0.0 0.0 NaN NaN
2 0.0 0.0 0.0 0.0 NaN NaN
3 NaN NaN 1.0 1.0 1.0 1.0
4 NaN NaN 1.0 1.0 1.0 1.0
5 NaN NaN 1.0 1.0 1.0 1.0
A B C D E F
0 0.0 0.0 0.0 0.0 NaN NaN
1 0.0 0.0 0.0 0.0 NaN NaN
2 0.0 0.0 0.0 0.0 NaN NaN
3 NaN NaN 1.0 1.0 1.0 1.0
4 NaN NaN 1.0 1.0 1.0 1.0
5 NaN NaN 1.0 1.0 1.0 1.0
C D
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 1.0 1.0
4 1.0 1.0
5 1.0 1.0
#橫向合并 df0 = pd.DataFrame(np.ones((3, 4)) * 0, index=['1', '2', '3'], columns=['A', 'B', 'C', 'D']) df1 = pd.DataFrame(np.ones((3, 4)) * 1, index=['2', '3', '4'], columns=['A', 'B', 'C', 'D']) print(df0);print() print(df1);print() res = pd.concat([df0, df1], axis=1) print(res);print() res = pd.concat([df0, df1], axis=1, join='inner', ignore_index=True) print(res);print() res = pd.concat([df0, df1], axis=1, join_axes=[df0.index]) print(res);print()
A B C D
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
A B C D
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
A B C D A B C D
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
4 NaN NaN NaN NaN 1.0 1.0 1.0 1.0
0 1 2 3 4 5 6 7
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
A B C D A B C D
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
df0 = pd.DataFrame(np.ones((3, 4)) * 0, index=['1', '2', '3'], columns=['A', 'B', 'C', 'D']) df1 = pd.DataFrame(np.ones((3, 4)) * 1, index=['2', '3', '4'], columns=['A', 'B', 'C', 'D']) print(df0);print() print(df1);print() res = df0.append([df1, df1], ignore_index=False) print(res);print() s = pd.Series([1,2,3,4], index=['A','B','C','E']) print(df0.append(s, ignore_index=True))
A B C D
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
A B C D
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
A B C D
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
A B C D E
0 0.0 0.0 0.0 0.0 NaN
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 1.0 2.0 3.0 NaN 4.0
df1 = pd.DataFrame({'key':['K0', 'K1', 'K2'], 'A':['A0', 'A1', 'A2'], 'B':['B0', 'B1', 'B2']}) df2 = pd.DataFrame({'key':['K3', 'K1', 'K2'], 'C':['C3', 'C1', 'C2'], 'D':['D3', 'D1', 'D2']}) print(df1); print() print(df2); print() res = pd.merge(df1, df2, on='key') print(res); print() res = pd.merge(df1, df2, on='key', how='outer') print(res); print() res = pd.merge(df1, df2, on='key', how='left') print(res); print() res = pd.merge(df1, df2, on='key', how='right') print(res); print()
A B key
0 A0 B0 K0
1 A1 B1 K1
2 A2 B2 K2
C D key
0 C3 D3 K3
1 C1 D1 K1
2 C2 D2 K2
A B key C D
0 A1 B1 K1 C1 D1
1 A2 B2 K2 C2 D2
A B key C D
0 A0 B0 K0 NaN NaN
1 A1 B1 K1 C1 D1
2 A2 B2 K2 C2 D2
3 NaN NaN K3 C3 D3
A B key C D
0 A0 B0 K0 NaN NaN
1 A1 B1 K1 C1 D1
2 A2 B2 K2 C2 D2
A B key C D
0 A1 B1 K1 C1 D1
1 A2 B2 K2 C2 D2
2 NaN NaN K3 C3 D3
df1 = pd.DataFrame({'key1':['K0', 'K0', 'K1'], 'key2':['K0', 'K1', 'K1'], 'A':['A0', 'A1', 'A2'], 'B':['B0', 'B1', 'B2']}) df2 = pd.DataFrame({'key1':['K0', 'K0', 'K1', 'K2'], 'key2':['K0', 'K0', 'K1', 'K2'], 'C':['C3', 'C1', 'C2', 'C4'], 'D':['D3', 'D1', 'D2', 'D4']}) print(df1); print() print(df2); print() res = pd.merge(df1, df2, on=['key1','key2']) print(res); print() res = pd.merge(df1, df2, on=['key1','key2'], how='outer', indicator='indi') print(res); print()
A B key1 key2
0 A0 B0 K0 K0
1 A1 B1 K0 K1
2 A2 B2 K1 K1
C D key1 key2
0 C3 D3 K0 K0
1 C1 D1 K0 K0
2 C2 D2 K1 K1
3 C4 D4 K2 K2
A B key1 key2 C D
0 A0 B0 K0 K0 C3 D3
1 A0 B0 K0 K0 C1 D1
2 A2 B2 K1 K1 C2 D2
A B key1 key2 C D indi
0 A0 B0 K0 K0 C3 D3 both
1 A0 B0 K0 K0 C1 D1 both
2 A1 B1 K0 K1 NaN NaN left_only
3 A2 B2 K1 K1 C2 D2 both
4 NaN NaN K2 K2 C4 D4 right_only
#以上是根據值合并。下面根據index合并 df1 = pd.DataFrame({'A':['A0', 'A1', 'A2'], 'B':['B0', 'B1', 'B2']}, index=['index0', 'index1', 'index2']) df2 = pd.DataFrame({'A':['C3', 'C1', 'C2'], 'D':['D3', 'D1', 'D2']}, index=['index3', 'index1', 'index2']) print(df1); print() print(df2); print() res = pd.merge(df1, df2, left_index=True, right_index=True) print(res); print() res = pd.merge(df1, df2, left_index=True, right_index=True, how='outer', suffixes=['_b', '_g']) print(res); print()
A B
index0 A0 B0
index1 A1 B1
index2 A2 B2
A D
index3 C3 D3
index1 C1 D1
index2 C2 D2
A_x B A_y D
index1 A1 B1 C1 D1
index2 A2 B2 C2 D2
A_b B A_g D
index0 A0 B0 NaN NaN
index1 A1 B1 C1 D1
index2 A2 B2 C2 D2
index3 NaN NaN C3 D3
res = df1.join(df2, how='outer', lsuffix='_left', rsuffix='_right') #不用on默認用索引合并 print(res);print() res = df1.join(df2, on='B', how='outer', lsuffix='_left', rsuffix='_right') #用on指定df1的某列和df2的索引合并 print(res);print()
A_left B A_right D
index0 A0 B0 NaN NaN
index1 A1 B1 C1 D1
index2 A2 B2 C2 D2
index3 NaN NaN C3 D3
A_left B A_right D
index0 A0 B0 NaN NaN
index1 A1 B1 NaN NaN
index2 A2 B2 NaN NaN
index2 NaN index3 C3 D3
index2 NaN index1 C1 D1
index2 NaN index2 C2 D2
import numpy as np import pandas as pd import matplotlib.pyplot as plt #畫圖模塊 s = pd.Series(np.random.randn(1000), index=np.arange(1000)) s = s.cumsum() #須在命令行執行, jupyter會報錯 #s.plot() #plt.show() df = pd.DataFrame(np.random.randn(1000, 3), columns=['A', 'B', 'C']) df = df.cumsum() print(df.head()); print() #head默認顯示前5行 #須在命令行執行, jupyter會報錯 #s.plot() #plt.show() #須在命令行執行, jupyter會報錯 #'bar', 'hist', 'box', 'kde', 'area', 'scatter', 'hexbin', 'pie'... #class_B = df.plot.scatter(x='A', y='B', color='DarkBlue', label='Class B') #畫圖,scatter<散點圖> #df.plot.scatter(x='A', y='C', color='DarkRed', label='Class C', class_B=class_B) #plt.show()
A B C
0 -0.399363 -1.004210 0.641141
1 -1.970009 -0.608482 -0.758504
2 -3.081640 -0.617352 -1.143872
3 -2.174627 -1.383785 -1.011411
4 -1.415515 -1.892226 -2.511739
更多關于Python相關內容感興趣的讀者可查看本站專題:《Python操作Excel表格技巧總結》、《Python文件與目錄操作技巧匯總》、《Python文本文件操作技巧匯總》、《Python數據結構與算法教程》、《Python函數使用技巧總結》、《Python字符串操作技巧匯總》及《Python入門與進階經典教程》
希望本文所述對大家Python程序設計有所幫助。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。