您好,登錄后才能下訂單哦!
這篇文章主要介紹了opencv3/C++圖像像素操作的示例分析,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。
RGB圖像轉灰度圖
RGB圖像轉換為灰度圖時通常使用:
進行轉換,以下嘗試通過其他對圖像像素操作的方式將RGB圖像轉換為灰度圖像。
#include<opencv2/opencv.hpp> #include<math.h> using namespace cv; int main() { //像素操作 Mat src,dst; src = imread("E:/image/image/daibola.jpg"); if(src.empty()) { printf("can not load image \n"); return -1; } namedWindow("input"); imshow("input",src); dst.create(src.size(), src.type()); for(int row = 0; row < src.rows; row++) { for(int col = 0; col < src.cols; col++) { int b = src.at<Vec3b>(row, col)[0]; int g = src.at<Vec3b>(row, col)[1]; int r = src.at<Vec3b>(row, col)[2]; dst.at<Vec3b>(row, col)[0] = max(r,max(g,b)); dst.at<Vec3b>(row, col)[1] = max(r,max(g,b)); dst.at<Vec3b>(row, col)[2] = max(r,max(g,b)); } } namedWindow("output"); imshow("output",dst); waitKey(); }
同理使用min(r,min(g,b))可以看到由于選擇了較小的灰度值圖像會明顯變暗:
圖像線性增強
通過對圖像像素操作(線性變換),實現圖像的線性增強。
#include<opencv2/opencv.hpp> #include<math.h> using namespace cv; int main() { Mat src1, dst; src1 = imread("E:/image/image/im1.jpg"); if(src1.empty()) { printf("can not load im1 \n"); return -1; } double alpha = 1.2, beta = 50; dst = Mat::zeros(src1.size(), src1.type()); for(int row = 0; row < src1.rows; row++) { for(int col = 0; col < src1.cols; col++) { if(src1.channels() == 3) { int b = src1.at<Vec3b>(row, col)[0]; int g = src1.at<Vec3b>(row, col)[1]; int r = src1.at<Vec3b>(row, col)[2]; dst.at<Vec3b>(row, col)[0] = saturate_cast<uchar>(b*alpha + beta); dst.at<Vec3b>(row, col)[1] = saturate_cast<uchar>(g*alpha + beta); dst.at<Vec3b>(row, col)[2] = saturate_cast<uchar>(r*alpha + beta); } else if (src1.channels() == 1) { float v = src1.at<uchar>(row, col); dst.at<uchar>(row, col) = saturate_cast<uchar>(v*alpha + beta); } } } namedWindow("output",CV_WINDOW_AUTOSIZE); imshow("output", dst); waitKey(); return 0; }
掩膜操作調整圖像對比度
使用一個3×3掩模增強圖像對比度:
#include<opencv2/opencv.hpp> #include<math.h> using namespace cv; int main() { Mat src, dst; src = imread("E:/image/image/daibola.jpg"); CV_Assert(src.depth() == CV_8U); if(!src.data) { printf("can not load image \n"); return -1; } src.copyTo(dst); for(int row = 1; row<(src.rows - 1); row++) { const uchar* previous = src.ptr<uchar>(row - 1); const uchar* current = src.ptr<uchar>(row); const uchar* next = src.ptr<uchar>(row + 1); uchar* output = dst.ptr<uchar>(row); for(int col = src.channels(); col < (src.cols - 1)*src.channels(); col++) { *output = saturate_cast<uchar>(9 * current[col] - 2*previous[col] - 2*next[col] - 2*current[col - src.channels()] - 2*current[col + src.channels()]); output++; } } namedWindow("image", CV_WINDOW_AUTOSIZE); imshow("image",dst); waitKey(); return 0; }
像素重映射
利用cv::remap實現像素重映射;
cv::remap參數說明:
Remap( InputArray src,// 輸入圖像 OutputArray dst,// 輸出圖像 InputArray map1,// 映射表1(CV_32FC1/CV_32FC2) InputArray map2,// 映射表2(CV_32FC1/CV_32FC2) int interpolation,// 選擇的插值 int borderMode,// 邊界類型(BORDER_CONSTANT) const Scalar borderValue// 顏色 )
插值方法:
CV_INTER_NN =0, CV_INTER_LINEAR =1, CV_INTER_CUBIC =2, CV_INTER_AREA =3, CV_INTER_LANCZOS4 =4
通過像素重映射實現圖像垂直翻轉:
#include<opencv2/opencv.hpp> using namespace cv; int main() { Mat src,dst; src = imread("E:/image/image/daibola.jpg"); if(src.empty()) { printf("can not load image \n"); return -1; } namedWindow("input", CV_WINDOW_AUTOSIZE); imshow("input", src); Mat mapx,mapy; mapx.create(src.size(), CV_32FC1); mapy.create(src.size(), CV_32FC1); for(int row = 0; row < src.rows; row++) { for(int col = 0; col < src.cols; col++) { mapx.at<float>(row, col) = col; mapy.at<float>(row, col) = src.rows - row - 1; } } remap(src, dst, mapx, mapy, CV_INTER_NN, BORDER_CONSTANT, Scalar(0,255,255)); namedWindow("output", CV_WINDOW_AUTOSIZE); imshow("output",dst); waitKey(); return 0; }
感謝你能夠認真閱讀完這篇文章,希望小編分享的“opencv3/C++圖像像素操作的示例分析”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,更多相關知識等著你來學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。