您好,登錄后才能下訂單哦!
tensor.expend()函數
>>> import torch >>> a=torch.tensor([[2],[3],[4]]) >>> print(a.size()) torch.Size([3, 1]) >>> a.expand(3,2) tensor([[2, 2], [3, 3], [4, 4]]) >>> a tensor([[2], [3], [4]])
可以看出expand()函數括號里面為變形后的size大小,而且原來的tensor和tensor.expand()是不共享內存的。
tensor.expand_as()函數
>>> b=torch.tensor([[2,2],[3,3],[5,5]]) >>> print(b.size()) torch.Size([3, 2]) >>> a.expand_as(b) tensor([[2, 2], [3, 3], [4, 4]]) >>> a tensor([[2], [3], [4]])
可以看出,b和a.expand_as(b)的size是一樣大的。且是不共享內存的。
以上這篇pytorch中tensor.expand()和tensor.expand_as()函數詳解就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。