您好,登錄后才能下訂單哦!
小編給大家分享一下關于pytorch SENet的案例分析,希望大家閱讀完這篇文章后大所收獲,下面讓我們一起去探討方法吧!
我就廢話不多說了,大家還是直接看代碼吧~
from torch import nn class SELayer(nn.Module): def __init__(self, channel, reduction=16): super(SELayer, self).__init__() //返回1X1大小的特征圖,通道數不變 self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() //全局平均池化,batch和channel和原來一樣保持不變 y = self.avg_pool(x).view(b, c) //全連接層+池化 y = self.fc(y).view(b, c, 1, 1) //和原特征圖相乘 return x * y.expand_as(x)
補充知識:pytorch 實現 SE Block
論文模塊圖
代碼
import torch.nn as nn class SE_Block(nn.Module): def __init__(self, ch_in, reduction=16): super(SE_Block, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) # 全局自適應池化 self.fc = nn.Sequential( nn.Linear(ch_in, ch_in // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(ch_in // reduction, ch_in, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x)
現在還有許多關于SE的變形,但大都大同小異
看完了這篇文章,相信你對關于pytorch SENet的案例分析有了一定的了解,想了解更多相關知識,歡迎關注億速云行業資訊頻道,感謝各位的閱讀!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。