亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

如何將labelme格式數據轉化為標準的coco數據集格式方式

發布時間:2021-08-13 16:28:30 來源:億速云 閱讀:431 作者:小新 欄目:開發技術

這篇文章主要介紹了如何將labelme格式數據轉化為標準的coco數據集格式方式,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。

labelme標注圖像生成的json格式:

{
 "version": "3.11.2",
 "flags": {},
 "shapes": [# 每個對象的形狀
 { # 第一個對象
  "label": "malignant",
  "line_color": null,
  "fill_color": null,
  "points": [# 邊緣是由點構成,將這些點連在一起就是對象的邊緣多邊形
  [
   371, # 第一個點 x 坐標
   257 # 第一個點 y 坐標
  ],
  ...
  [
   412,
   255
  ]
  ],
  "shape_type": "polygon" # 形狀類型:多邊形
 },
 {
  "label": "malignant", # 第一個對象的標簽
  "line_color": null,
  "fill_color": null,
  "points": [# 第二個對象
  [
   522,
   274
  ],
  ...
  [
   561,
   303
  ]
  ],
  "shape_type": "polygon"
 },
 {
  "label": "malignant", # 第二個對象的標簽
  "line_color": null,
  "fill_color": null,
 "imagePath": "../../val2017/000001.jpg", # 原始圖片的路徑
 "imageData":"something too long ",# 原圖像數據 通過該字段可以解析出原圖像數據
 "imageHeight": 768,
 "imageWidth": 1024
}

coco標準數據集格式:

COCO通過大量使用Amazon Mechanical Turk來收集數據。COCO數據集現在有3種標注類型:object instances(目標實例), object keypoints(目標上的關鍵點), and image captions(看圖說話),使用JSON文件存儲。

基本的JSON結構體類型

這3種類型共享下面所列的基本類型,包括image、categories、annotation類型。

Images類型:

"images": [
  {
   "height": 768,
   "width": 1024,
   "id": 1, #圖片id
   "file_name": "000002.jpg"
  }
]

categories類型:

"categories": [
  {
   "supercategory": "Cancer", #父類
   "id": 1,   #標簽類別id,0表示背景
   "name": "benign" #子類
  },
  {
   "supercategory": "Cancer",
   "id": 2,
   "name": "malignant"
  }
 ],

annotations類型:

"annotations": [
  {
   "segmentation": [#坐標點的坐標值
    [
     418,
     256,
     391,
     293,
     406,
     323,
     432,
     340,
     452,
     329,
     458,
     311,
     458,
     286,
     455,
     277,
     439,
     264,
     418,
     293,
     391,
     256
    ]
   ],
   "iscrowd": 0, #單個的對象(iscrowd=0)可能需要多個polygon來表示
   "image_id": 1, #和image的id保持一致
   "bbox": [  #標注的邊框值 bbox是將segmentation包起來的水平矩形
    391.0,
    256.0,
    67.0,
    84.0
   ],
   "area": 5628.0, #標注的邊框面積
   "category_id": 1, #所屬類別id
   "id": 1   #標注邊框的id : 1,2,3...,n
  }
]

labelme 轉化為coco

# -*- coding:utf-8 -*-
# !/usr/bin/env python
 
import argparse
import json
import matplotlib.pyplot as plt
import skimage.io as io
import cv2
from labelme import utils
import numpy as np
import glob
import PIL.Image
 
class MyEncoder(json.JSONEncoder):
 def default(self, obj):
  if isinstance(obj, np.integer):
   return int(obj)
  elif isinstance(obj, np.floating):
   return float(obj)
  elif isinstance(obj, np.ndarray):
   return obj.tolist()
  else:
   return super(MyEncoder, self).default(obj)
 
class labelme2coco(object):
 def __init__(self, labelme_json=[], save_json_path='./tran.json'):
  '''
  :param labelme_json: 所有labelme的json文件路徑組成的列表
  :param save_json_path: json保存位置
  '''
  self.labelme_json = labelme_json
  self.save_json_path = save_json_path
  self.images = []
  self.categories = []
  self.annotations = []
  # self.data_coco = {}
  self.label = []
  self.annID = 1
  self.height = 0
  self.width = 0
 
  self.save_json()
 
 def data_transfer(self):
 
  for num, json_file in enumerate(self.labelme_json):
   with open(json_file, 'r') as fp:
    data = json.load(fp) # 加載json文件
    self.images.append(self.image(data, num))
    for shapes in data['shapes']:
     label = shapes['label']
     if label not in self.label:
      self.categories.append(self.categorie(label))
      self.label.append(label)
     points = shapes['points']#這里的point是用rectangle標注得到的,只有兩個點,需要轉成四個點
     #points.append([points[0][0],points[1][1]])
     #points.append([points[1][0],points[0][1]])
     self.annotations.append(self.annotation(points, label, num))
     self.annID += 1
 
 def image(self, data, num):
  image = {}
  img = utils.img_b64_to_arr(data['imageData']) # 解析原圖片數據
  # img=io.imread(data['imagePath']) # 通過圖片路徑打開圖片
  # img = cv2.imread(data['imagePath'], 0)
  height, width = img.shape[:2]
  img = None
  image['height'] = height
  image['width'] = width
  image['id'] = num + 1
  #image['file_name'] = data['imagePath'].split('/')[-1]
  image['file_name'] = data['imagePath'][3:14]
  self.height = height
  self.width = width
 
  return image
 
 def categorie(self, label):
  categorie = {}
  categorie['supercategory'] = 'Cancer'
  categorie['id'] = len(self.label) + 1 # 0 默認為背景
  categorie['name'] = label
  return categorie
 
 def annotation(self, points, label, num):
  annotation = {}
  annotation['segmentation'] = [list(np.asarray(points).flatten())]
  annotation['iscrowd'] = 0
  annotation['image_id'] = num + 1
  # annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件時報錯(不知道為什么)
  # list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用該方式轉成list
  annotation['bbox'] = list(map(float, self.getbbox(points)))
  annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
  # annotation['category_id'] = self.getcatid(label)
  annotation['category_id'] = self.getcatid(label)#注意,源代碼默認為1
  annotation['id'] = self.annID
  return annotation
 
 def getcatid(self, label):
  for categorie in self.categories:
   if label == categorie['name']:
    return categorie['id']
  return 1
 
 def getbbox(self, points):
  # img = np.zeros([self.height,self.width],np.uint8)
  # cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA) # 畫邊界線
  # cv2.fillPoly(img, [np.asarray(points)], 1) # 畫多邊形 內部像素值為1
  polygons = points
 
  mask = self.polygons_to_mask([self.height, self.width], polygons)
  return self.mask2box(mask)
 
 def mask2box(self, mask):
  '''從mask反算出其邊框
  mask:[h,w] 0、1組成的圖片
  1對應對象,只需計算1對應的行列號(左上角行列號,右下角行列號,就可以算出其邊框)
  '''
  # np.where(mask==1)
  index = np.argwhere(mask == 1)
  rows = index[:, 0]
  clos = index[:, 1]
  # 解析左上角行列號
  left_top_r = np.min(rows) # y
  left_top_c = np.min(clos) # x
 
  # 解析右下角行列號
  right_bottom_r = np.max(rows)
  right_bottom_c = np.max(clos)
 
  # return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]
  # return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]
  # return [left_top_c, left_top_r, right_bottom_c, right_bottom_r] # [x1,y1,x2,y2]
  return [left_top_c, left_top_r, right_bottom_c - left_top_c,
    right_bottom_r - left_top_r] # [x1,y1,w,h] 對應COCO的bbox格式
 
 def polygons_to_mask(self, img_shape, polygons):
  mask = np.zeros(img_shape, dtype=np.uint8)
  mask = PIL.Image.fromarray(mask)
  xy = list(map(tuple, polygons))
  PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
  mask = np.array(mask, dtype=bool)
  return mask
 
 def data2coco(self):
  data_coco = {}
  data_coco['images'] = self.images
  data_coco['categories'] = self.categories
  data_coco['annotations'] = self.annotations
  return data_coco
 
 def save_json(self):
  self.data_transfer()
  self.data_coco = self.data2coco()
  # 保存json文件
  json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder) # indent=4 更加美觀顯示
 
 
labelme_json = glob.glob('./Annotations/*.json')
# labelme_json=['./Annotations/*.json']
 
labelme2coco(labelme_json, './json/test.json')

感謝你能夠認真閱讀完這篇文章,希望小編分享的“如何將labelme格式數據轉化為標準的coco數據集格式方式”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,更多相關知識等著你來學習!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

汽车| 尼玛县| 西丰县| 德令哈市| 威宁| 晴隆县| 隆德县| 新疆| 招远市| 三门峡市| 云和县| 开江县| 湟中县| 金坛市| 岱山县| 石城县| 花垣县| 祁东县| 武夷山市| 黄梅县| 禹州市| 东宁县| 普陀区| 高碑店市| 北辰区| 会宁县| 宜兰县| 辰溪县| 庆安县| 凌云县| 遂昌县| 丰都县| 故城县| 梓潼县| 循化| 承德市| 长沙县| 五峰| 洞头县| 晴隆县| 沧源|