您好,登錄后才能下訂單哦!
如何在python中利用opencv拼接圖像?相信很多沒有經驗的人對此束手無策,為此本文總結了問題出現的原因和解決方法,通過這篇文章希望你能解決這個問題。
Python是一種跨平臺的、具有解釋性、編譯性、互動性和面向對象的腳本語言,其最初的設計是用于編寫自動化腳本,隨著版本的不斷更新和新功能的添加,常用于用于開發獨立的項目和大型項目。
思路和方法
思路
1、提取要拼接的兩張圖片的特征點、特征描述符;
2、將兩張圖片中對應的位置點找到,匹配起來;
3、如果找到了足夠多的匹配點,就能將兩幅圖拼接起來,拼接前,可能需要將第二幅圖透視旋轉一下,利用找到的關鍵點,將第二幅圖透視旋轉到一個與第一幅圖相同的可以拼接的角度;
4、進行拼接;
5、進行拼接后的一些處理,讓效果看上去更好。
實現方法
1、提取圖片的特征點、描述符,可以使用opencv創建一個SIFT對象,SIFT對象使用DoG方法檢測關鍵點,并對每個關鍵點周圍的區域計算特征向量。在實現時,可以使用比SIFT快的SURF方法,使用Hessian算法檢測關鍵點。因為只是進行全景圖拼接,在使用SURF時,還可以調節它的參數,減少一些關鍵點,只獲取64維而不是128維的向量等,加快速度。
2、在分別提取好了兩張圖片的關鍵點和特征向量以后,可以利用它們進行兩張圖片的匹配。在拼接圖片中,可以使用Knn進行匹配,但是使用FLANN快速匹配庫更快,圖片拼接,需要用到FLANN的單應性匹配。
3、單應性匹配完之后可以獲得透視變換H矩陣,用這個的逆矩陣來對第二幅圖片進行透視變換,將其轉到和第一張圖一樣的視角,為下一步拼接做準備。
4、透視變換完的圖片,其大小就是最后全景圖的大小,它的右邊是透視變換以后的圖片,左邊是黑色沒有信息。拼接時可以比較簡單地處理,通過numpy數組選擇直接把第一張圖加到它的左邊,覆蓋掉重疊部分,得到拼接圖片,這樣做非常快,但是最后效果不是很好,中間有一條分割痕跡非常明顯。使用opencv指南中圖像金字塔的代碼對拼接好的圖片進行處理,整個圖片平滑了,中間的縫還是特別突兀。
5、直接拼效果不是很好,可以把第一張圖疊在左邊,但是對第一張圖和它的重疊區做一些加權處理,重疊部分,離左邊圖近的,左邊圖的權重就高一些,離右邊近的,右邊旋轉圖的權重就高一些,然后兩者相加,使得過渡是平滑地,這樣看上去效果好一些,速度就比較慢。如果是用SURF來做,時間主要畫在平滑處理上而不是特征點提取和匹配。
python_opencv中主要使用的函數
0、基于python 3.7和對應的python-opencv
1、cv2.xfeatures2d.SURF_create ([hessianThreshold[, nOctaves[, nOctaveLayers[, extended[, upright]]]]])
該函數用于生成一個SURF對象,在使用時,為提高速度,可以適當提高hessianThreshold,以減少檢測的關鍵點的數量,可以extended=False,只生成64維的描述符而不是128維,令upright=True,不檢測關鍵點的方向。
2、cv2.SURF.detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]])
該函數用于計算圖片的關鍵點和描述符,需要對兩幅圖都進行計算。
3、flann=cv2.FlannBasedMatcher(indexParams,searchParams)
match=flann.knnMatch(descrip1,descrip2,k=2)
flann快速匹配器有兩個參數,一個是indexParams,一個是searchParams,都用手冊上建議的值就可以。在創建了匹配器得到匹配數組match以后,就可以參考Lowe給出的參數,對匹配進行過濾,過濾掉不好的匹配。其中返回值match包括了兩張圖的描述符距離distance 、訓練圖(第二張)的描述符索引trainIdx 、查詢的圖(第一張)的描述符索引queryIdx 這幾個屬性。
4、M,mask=cv2.findHomography(srcPoints, dstPoints[, method[, ransacReprojThreshold[, mask]]])
這個函數實現單應性匹配,返回的M是一個矩陣,即對關鍵點srcPoints做M變換能變到dstPoints的位置。
5、warpImg=cv2.warpPerspective(src,np.linalg.inv(M),dsize[,dst[,flags[,borderMode[,borderValue]]]])
用這個函數進行透視變換,變換視角。src是要變換的圖片,np.linalg.inv(M)是④中M的逆矩陣,得到方向一致的圖片。
6、a=b.copy() 實現深度復制,Python中默認是按引用復制,a=b是a指向b的內存。
7、draw_params = dict(matchColor = (0,255,0),singlePointColor = (255,0,0),matchesMask = matchMask,flags = 2),img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)
使用drawMatches可以畫出匹配的好的關鍵點,matchMask是比較好的匹配點,之間用綠色線連接起來。
核心代碼
import cv2 import numpy as np from matplotlib import pyplot as plt import time MIN = 10 starttime=time.time() img1 = cv2.imread('1.jpg') #query img2 = cv2.imread('2.jpg') #train #img1gray=cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY) #img2gray=cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY) surf=cv2.xfeatures2d.SURF_create(10000,nOctaves=4,extended=False,upright=True) #surf=cv2.xfeatures2d.SIFT_create()#可以改為SIFT kp1,descrip1=surf.detectAndCompute(img1,None) kp2,descrip2=surf.detectAndCompute(img2,None) FLANN_INDEX_KDTREE = 0 indexParams = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) searchParams = dict(checks=50) flann=cv2.FlannBasedMatcher(indexParams,searchParams) match=flann.knnMatch(descrip1,descrip2,k=2) good=[] for i,(m,n) in enumerate(match): if(m.distance<0.75*n.distance): good.append(m) if len(good)>MIN: src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1,1,2) ano_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1,1,2) M,mask=cv2.findHomography(src_pts,ano_pts,cv2.RANSAC,5.0) warpImg = cv2.warpPerspective(img2, np.linalg.inv(M), (img1.shape[1]+img2.shape[1], img2.shape[0])) direct=warpImg.copy() direct[0:img1.shape[0], 0:img1.shape[1]] =img1 simple=time.time() #cv2.namedWindow("Result", cv2.WINDOW_NORMAL) #cv2.imshow("Result",warpImg) rows,cols=img1.shape[:2] for col in range(0,cols): if img1[:, col].any() and warpImg[:, col].any():#開始重疊的最左端 left = col break for col in range(cols-1, 0, -1): if img1[:, col].any() and warpImg[:, col].any():#重疊的最右一列 right = col break res = np.zeros([rows, cols, 3], np.uint8) for row in range(0, rows): for col in range(0, cols): if not img1[row, col].any():#如果沒有原圖,用旋轉的填充 res[row, col] = warpImg[row, col] elif not warpImg[row, col].any(): res[row, col] = img1[row, col] else: srcImgLen = float(abs(col - left)) testImgLen = float(abs(col - right)) alpha = srcImgLen / (srcImgLen + testImgLen) res[row, col] = np.clip(img1[row, col] * (1-alpha) + warpImg[row, col] * alpha, 0, 255) warpImg[0:img1.shape[0], 0:img1.shape[1]]=res final=time.time() img3=cv2.cvtColor(direct,cv2.COLOR_BGR2RGB) plt.imshow(img3,),plt.show() img4=cv2.cvtColor(warpImg,cv2.COLOR_BGR2RGB) plt.imshow(img4,),plt.show() print("simple stich cost %f"%(simple-starttime)) print("\ntotal cost %f"%(final-starttime)) cv2.imwrite("simplepanorma.png",direct) cv2.imwrite("bestpanorma.png",warpImg) else: print("not enough matches!")
看完上述內容,你們掌握如何在python中利用opencv拼接圖像的方法了嗎?如果還想學到更多技能或想了解更多相關內容,歡迎關注億速云行業資訊頻道,感謝各位的閱讀!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。