亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

怎么使用NLTK庫計算模型評估指標

小億
84
2024-05-13 14:01:24
欄目: 編程語言

NLTK庫主要用于自然語言處理任務,不直接提供計算模型評估指標的功能。一般來說,要計算模型評估指標,可以使用其他庫如scikit-learn或者直接編寫代碼來計算。以下是一個示例代碼,演示如何使用scikit-learn庫計算模型評估指標:

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import nltk
from nltk.corpus import movie_reviews

# Load movie reviews dataset
nltk.download('movie_reviews')
documents = [(list(movie_reviews.words(fileid)), category) for category in movie_reviews.categories() for fileid in movie_reviews.fileids(category)]
text = [" ".join(document) for document, category in documents]
labels = [category for document, category in documents]

# Vectorize the text data
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(text)

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)

# Train a logistic regression model
model = LogisticRegression()
model.fit(X_train, y_train)

# Make predictions on the test set
y_pred = model.predict(X_test)

# Calculate evaluation metrics
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='macro')
recall = recall_score(y_test, y_pred, average='macro')
f1 = f1_score(y_test, y_pred, average='macro')

print(f"Accuracy: {accuracy}")
print(f"Precision: {precision}")
print(f"Recall: {recall}")
print(f"F1 Score: {f1}")

上述代碼使用scikit-learn庫加載電影評論數據集,訓練了一個邏輯回歸模型,并計算了準確率、精確率、召回率和F1分數等模型評估指標。您可以根據實際需求修改代碼以適應不同的數據集和模型。

0
蕲春县| 甘肃省| 襄垣县| 长治县| 锡林郭勒盟| 定结县| 黄石市| 新乐市| 琼结县| 宝丰县| 博客| 潮州市| 新宾| 南川市| 阿荣旗| 古浪县| 永康市| 丘北县| 凉城县| 洪泽县| 远安县| 炉霍县| 扎赉特旗| 滕州市| 旺苍县| 砚山县| 甘孜| 教育| 巴彦淖尔市| 云龙县| 永靖县| 原阳县| 永德县| 朝阳县| 龙口市| 寿阳县| 阿拉善右旗| 禄丰县| 桂林市| 宾阳县| 北京市|