亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

PyTorch中怎么實現自注意力機制

小億
126
2024-05-10 19:14:04
欄目: 深度學習

在PyTorch中實現自注意力機制可以使用torch.nn.MultiheadAttention模塊。具體實現步驟如下:

  1. 導入必要的庫:
import torch
import torch.nn as nn
  1. 定義自注意力機制模塊:
class SelfAttention(nn.Module):
    def __init__(self, embed_size, heads):
        super(SelfAttention, self).__init__()
        self.embed_size = embed_size
        self.heads = heads
        self.head_dim = embed_size // heads
        
        assert self.head_dim * heads == embed_size, "Embed size needs to be divisible by heads"
        
        self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.fc_out = nn.Linear(heads * self.head_dim, embed_size)
  1. 實現自注意力機制的前向傳播方法:
def forward(self, value, key, query, mask=None):
    N = query.shape[0]
    value_len, key_len, query_len = value.shape[1], key.shape[1], query.shape[1]
    
    # Split the embedding into self.heads pieces
    values = value.reshape(N, value_len, self.heads, self.head_dim)
    keys = key.reshape(N, key_len, self.heads, self.head_dim)
    queries = query.reshape(N, query_len, self.heads, self.head_dim)
    
    values = self.values(values)
    keys = self.keys(keys)
    queries = self.queries(queries)
    
    energy = torch.einsum("nqhd, nkhd->nhqk", [queries, keys])
    
    if mask is not None:
        energy = energy.masked_fill(mask == 0, float("-1e20"))
    
    attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3)
    
    out = torch.einsum("nhql, nlhd->nqhd", [attention, values]).reshape(
        N, query_len, self.heads * self.head_dim
    )
    
    out = self.fc_out(out)
    
    return out
  1. 使用自注意力機制模塊進行實驗:
# Define input tensor
value = torch.rand(3, 10, 512)  # (N, value_len, embed_size)
key = torch.rand(3, 10, 512)  # (N, key_len, embed_size)
query = torch.rand(3, 10, 512)  # (N, query_len, embed_size)

# Create self attention layer
self_attn = SelfAttention(512, 8)

# Perform self attention
output = self_attn(value, key, query)
print(output.shape)

通過以上步驟,就可以在PyTorch中實現自注意力機制。

0
宁阳县| 广德县| 商南县| 东源县| 焦作市| 平江县| 新泰市| 新野县| 洛浦县| 云龙县| 凤阳县| 海兴县| 蒲城县| 象山县| 曲松县| 恩平市| 镇原县| 永泰县| 贵定县| 泾川县| 五原县| 青冈县| 广汉市| 阿鲁科尔沁旗| 宣汉县| 城固县| 松桃| 保德县| 南投市| 民勤县| 托克逊县| 台东县| 蓬安县| 遵义县| 苍山县| 申扎县| 曲阜市| 永州市| 论坛| 防城港市| 股票|