亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

如何在Keras中應用注意力機制

小樊
98
2024-04-23 14:11:52
欄目: 深度學習

在Keras中應用注意力機制可以通過使用自定義層(custom layer)來實現。以下是一個示例代碼,演示了如何在Keras模型中添加一個簡單的注意力機制:

import tensorflow as tf
from tensorflow.keras.layers import Layer

class AttentionLayer(Layer):
    def __init__(self):
        super(AttentionLayer, self).__init__()

    def build(self, input_shape):
        self.W = self.add_weight(shape=(input_shape[-1], 1),
                                 initializer='random_normal',
                                 trainable=True)
        super(AttentionLayer, self).build(input_shape)

    def call(self, inputs):
        u = tf.tanh(tf.matmul(inputs, self.W))
        a = tf.nn.softmax(u, axis=1)
        output = tf.reduce_sum(inputs * a, axis=1)
        return output

# 定義一個簡單的Keras模型
inputs = tf.keras.Input(shape=(10,))
x = tf.keras.layers.Dense(64, activation='relu')(inputs)
x = tf.keras.layers.Dropout(0.2)(x)
outputs = AttentionLayer()(x)

model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer='adam', loss='mse')

# 訓練模型
model.fit(x_train, y_train, epochs=10, batch_size=32)

在上面的代碼中,首先定義了一個自定義的注意力層 AttentionLayer,在該層的 build 方法中初始化權重矩陣 W,在 call 方法中計算注意力權重并將其應用到輸入上。然后在Keras模型中添加這個注意力層,可以在任何需要注意力機制的地方使用該層。最后通過編譯模型并訓練進行訓練。

0
渝中区| 九龙坡区| 托克逊县| 绥江县| 乡城县| 双流县| 闸北区| 靖州| 剑川县| 泌阳县| 喀喇| 泊头市| 兴义市| 永宁县| 海伦市| 五莲县| 盐边县| 汶川县| 新营市| 东港市| 安徽省| 开原市| 翼城县| 时尚| 沙雅县| 金昌市| 永平县| 宝兴县| 贵阳市| 永州市| 延吉市| 宿迁市| 奉化市| 思茅市| 烟台市| 怀来县| 衡南县| 阜康市| 四平市| 襄樊市| 嘉峪关市|