亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Kafka核心思想概括和底層原理

發布時間:2021-09-04 11:09:05 來源:億速云 閱讀:149 作者:chen 欄目:編程語言

本篇內容主要講解“Kafka核心思想概括和底層原理”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“Kafka核心思想概括和底層原理”吧!

Kafka核心思想概括

所有的消息以“有序日志“的方式存儲,生產者將消息發布到末端(可理解為追加),消費者從某個邏輯位按序讀取。

【場景一】消息中間件

在選擇消息中間件時,我們的主要關注點有:性能、消息的可靠性,順序性。

1.性能

關于Kafka的高性能,主要是因為它在實現上利用了操作系統一些底層的優化技術,盡管作為寫業務代碼的程序員,這些底層知識也是需要了解的。

Kafka核心思想概括和底層原理

【優化一】零拷貝

這是Kafka在消費者端的優化,我們通過兩張圖來比較一下傳統方式與零拷貝方式的區別:

傳統方式:

Kafka核心思想概括和底層原理

  • 零拷貝方式:

  • 終極目標:如何讓數據不經過用戶空間?

  • 從圖中可看出,零拷貝省略了拷貝到用戶緩沖的步驟,通過文件描述符,直接從內核空間將數據復制到網卡接口。

Kafka核心思想概括和底層原理

【優化二】順序寫入磁盤

寫入消息時,采用文件追加的方式,并且不允許修改已經寫入的消息,于是寫入磁盤的方式是順序寫入。我們通常認為的基于磁盤讀寫性能較差,指的是基于磁盤的隨機讀寫;事實上,基于磁盤的順序讀寫,性能接近于內存的隨機讀寫,以下是性能對比圖:

Kafka核心思想概括和底層原理

【優化三】內存映射

  • 概括:用戶空間的一段內存區域映射到內核空間,這樣,無論是內核空間或用戶空間對這段內存區域的修改,都可以直接映射到另一個區域。

  • 優勢:如果內核態和用戶態存在大量的數據傳輸,效率是非常高的。

  • 為什么會提高效率:概括來講,傳統方式為read()系統調用,進行了兩次數據拷貝;內存映射方式為mmap()系統調用,只進行一次數據拷貝

【優化四】批量壓縮

  • 生產者:批量發送消息集消費者:主動拉取數據,同樣采用批量拉取的方式

2.可靠性

Kafka的副本機制是保證其可靠性的核心。

關于副本機制,我將它理解為Leader-Follower機制,就是多個服務器中有相同數據的多個副本,并且劃分的粒度是分區。很明顯,這樣的策略就有下面幾個問題必須解決:

  • 各副本間如何同步?

  • ISR機制:Leader動態維護一個ISR(In-Sync Replica)列表,

  • Leader故障,如何選舉新的Leader?

  • 要想解決這個問題,就要引出Zookeeper,它是Kafka實現副本機制的前提,關于它的原理且聽下回分解,本篇還是從Kafka角度進行分析。在這里我們只需要了解,一些關于Broker、Topics、Partitions的元信息存儲在Zookeeper中,Leader發生故障時,從ISR集合中進行選舉新的Leader。

request.required.acks來設置數據的可靠性:

Kafka核心思想概括和底層原理

分區機制和副本機制知識點:

Kafka核心思想概括和底層原理

3.順序性

順序性保證主要依賴于分區機制 + 偏移量。

提到分區,首先就要解釋一下相關的概念以及他們之間的關系,個人總結如下幾點:

服務器(Broker):指一個獨立的服務器

主題(Topic):消息的邏輯分類,可跨Broker

分區(Partition):消息的物理分類,基本的存儲單元

這里盜一張圖闡述上述概念間的關系

Kafka核心思想概括和底層原理

  • 為什么分區機制可以保證消息的順序性?

  • Kafka可以保證一個分區內消息是有序且不可變的。

  • 生產者:Kafka的消息是一個鍵值對,我們通過設置鍵值,指定消息被發送到特定主題的特定分區。

  • 可以通過設置key,將同一類型的消息,發到同一個分區,就可以保證消息的有序性。

  • 消費者:消費者需要通過保存偏移量,來記錄自己消費到哪個位置,在0.10版本前,偏移量保存在zk中,后來保存在 __consumeroffsets topic中。

【場景二】流處理

在0.10版本后,Kafka內置了流處理框架API——Kafka Streams,一個基于Kafka的流式處理類庫,它利用了上述,至此,Kafka也就隨之發展成為一個囊括消息系統、存儲系統、流處理系統的中央式的流處理平臺。

與已有的Spark Streaming平臺不同的是,Spark Streaming或Flink是一個是一個系統架構,而Kafka Streams屬于一個庫。Kafka Streams秉承簡單的設計原則,優勢體現在運維上。同時Kafka Streams保持了上面提到的所有特性。

關于二者適合的應用場景,已有大佬給出了結論,就不強行總結了。

  • Kafka Streams:適合”Kafka --> Kafka“場景

  • Spark Streaming:適合”Kafka --> 數據庫”或“Kafka --> 數據科學模型“場景

到此,相信大家對“Kafka核心思想概括和底層原理”有了更深的了解,不妨來實際操作一番吧!這里是億速云網站,更多相關內容可以進入相關頻道進行查詢,關注我們,繼續學習!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

新野县| 乐清市| 休宁县| 驻马店市| 兴文县| 汝南县| 甘南县| 东光县| 定结县| 宁海县| 广东省| 阿拉善盟| 日照市| 武隆县| 涟源市| 玉树县| 马边| 安阳县| 南木林县| 天气| 响水县| 建瓯市| 三都| 遵义市| 玛曲县| 铜陵市| 拉萨市| 延吉市| 铜川市| 寿宁县| 孟村| 荥经县| 金阳县| 怀仁县| 福泉市| 河西区| 南召县| 永宁县| 衢州市| 新丰县| 康乐县|