您好,登錄后才能下訂單哦!
【面試題】給40億個不重復的無符號整數,沒排過序。給一個無符號整數,如何快速判斷一個數是否在這40億個數中。
● 在看到這個題后最先想到的方法是遍歷這40億個數,依次進行判斷,但此做法需要的內存很大,大約為15G(4000000000 * 4 ÷(1024*1024*1024)),可見此算法不可取。
● 如果內存夠的話,我們可以通過位圖實現,位圖一個數組每個數據的每個二進制位表示一個數據,每一位用0,1表示當前這個位置上是否存有值,同樣是利用哈希存儲的方法。此做法可以大大減少內存,對于此題是一個int類型就可以編程32個位,需要的內存空間從15G降到500M。
具體實現如下:
#pragma class BitMap//位圖 { public: BitMap() :_size(0) {} BitMap(size_t size)//size表示多少位,不是數據個數 : _size(size) {//調整大小為size / 32 + 1即右移5位加1(加1:需要的大小要包含size,例如10%8=1,大小應為2) _a.resize((size >> 5) + 1); } //位圖中,注意1在移位時為左移num不是左移32-num; void Set(size_t x)//存入x位,置1 { size_t index = x >> 5; size_t num = x % 32;//eg:x = 35,num = 3,則在位圖中為_a[1]中設為001 ++_size; _a[index] |= 1 << num;//1左移3位,進行|使_a中對應處為 } void Remove(size_t x)//刪除x位,置0 { size_t index = x >> 5; size_t num = x % 32;//eg:x = 35,num = 3,則在位圖中為_a[1]中設為110 --_size; _a[index] &= (~(1 << num));//1右移3位取反0,進行&使_a中對應處為0 } bool Test(size_t x)//判斷是否存在 { size_t index = x >> 5; size_t num = x % 32; if (_a[index] & (1 << num))//如果當前位為1,則存在 { return true; } return false; } void Resize(size_t size)//重置大小 { _a.resize((size >> 5) + 1); } size_t Size()//返回位圖的總位數 { return _size; } size_t Capacity()//返回int數據個數 { return _a.size(); } void Print() { for (size_t i = 0; i < _a.size(); i++) { cout << _a[i] << " " << endl; } cout << endl; } private: vector<size_t> _a; size_t _size; }; void TestBitMap() { BitMap bm(65); bm.Set(3); bm.Set(4); bm.Set(5); bm.Print(); cout << "is 4 EXTST? " << bm.Test(4) << endl; cout << "is 8 EXTST? " << bm.Test(8) << endl; bm.Remove(4); cout << "is 4 EXTST? " << bm.Test(4) << endl; bm.Print(); cout << "size: " << bm.Size() << endl; cout << "capacity: " << bm.Capacity() << endl; bm.Resize(100); cout << "capacity: " << bm.Capacity() << endl; }
● Bloom Filter 是一種空間效率很高的隨機數據結構,Bloom filter 可以看做是對 bit-map 的擴展, 它的原理是:
當一個元素被加入集合時,通過 K 個 Hash函數將這個元素映射成一個位陣列(Bit array)中的 K 個點,把它們置為 1。檢索時,只要看看這些點是不是都是 1 就知道集合中有沒有它了。
1、如果這些點有任何一個 0,則被檢索元素一定不在;
2、如果都是 1,則被檢索元素可能在。
用了素數表和6個哈希算法:
#pragma size_t _GetNextPrime(size_t size)//素數表:獲取下一個素數 { const int _PrimeSize = 28; static const unsigned long _PrimeList[_PrimeSize] = { 53ul, 97ul, 193ul, 389ul, 769ul, 1543ul, 3079ul, 6151ul, 12289ul, 24593ul, 49157ul, 98317ul, 196613ul, 393241ul, 786433ul, 1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul }; for (size_t i = 0; i < _PrimeSize; ++i) { if (_PrimeList[i] > size) { return _PrimeList[i]; } return _PrimeList[i - 1]; } return _PrimeList[_PrimeSize];//如果size大于或等于素數表中數據,就返回表中最大數 } //6種字符串哈希算法 template<class T> size_t BKDRHash(const T * str) { register size_t hash = 0; while (size_t ch = (size_t)*str++) { hash = hash * 131 + ch; // 也可以乘以31、131、1313、13131、131313.. } return hash; } template<class T> size_t SDBMHash(const T *str) { register size_t hash = 0; while (size_t ch = (size_t)*str++) { hash = 65599 * hash + ch; //hash = (size_t)ch + (hash << 6) + (hash << 16) - hash; } return hash; } template<class T> size_t RSHash(const T *str) { register size_t hash = 0; size_t magic = 63689; while (size_t ch = (size_t)*str++) { hash = hash * magic + ch; magic *= 378551; } return hash; } template<class T> size_t APHash(const T *str) { register size_t hash = 0; size_t ch; for (long i = 0; ch = (size_t)*str++; i++) { if ((i & 1) == 0) { hash ^= ((hash << 7) ^ ch ^ (hash >> 3)); } else { hash ^= (~((hash << 11) ^ ch ^ (hash >> 5))); } } return hash; } template<class T> size_t JSHash(const T *str) { if (!*str) // 這是由本人添加,以保證空字符串返回哈希值0 return 0; register size_t hash = 1315423911; while (size_t ch = (size_t)*str++) { hash ^= ((hash << 5) + ch + (hash >> 2)); } return hash; } template<class T> size_t DEKHash(const T* str) { if (!*str) // 以保證空字符串返回哈希值0 return 0; register size_t hash = 1315423911; while (size_t ch = (size_t)*str++) { hash = ((hash << 5) ^ (hash >> 27)) ^ ch; } return hash; } //6個仿函數分別進行6種字符串算法的調用 template<class T> struct _HashFunc1 { size_t operator()(const T& str) { return BKDRHash(str.c_str()); } }; template<class T> struct _HashFunc2 { size_t operator()(const T& str) { return SDBMHash(str.c_str()); } }; template<class T> struct _HashFunc3 { size_t operator()(const T& str) { return RSHash(str.c_str()); } }; template<class T> struct _HashFunc4 { size_t operator()(const T& str) { return APHash(str.c_str()); } }; template<class T> struct _HashFunc5 { size_t operator()(const T& str) { return JSHash(str.c_str()); } }; template<class T> struct _HashFunc6 { size_t operator()(const T& str) { return DEKHash(str.c_str()); } };
布隆過濾器具體實現如下:
#define _CRT_SECURE_NO_WARNINGS 1 template<class K = string, class HashFunc1 = _HashFunc1<K>, class HashFunc2 = _HashFunc2<K>, class HashFunc3 = _HashFunc3<K>, class HashFunc4 = _HashFunc4<K>, class HashFunc5 = _HashFunc5<K>, class HashFunc6 = _HashFunc6<K>> class BloomFilter { public: BloomFilter(size_t size = 0) { _capacity = _GetNextPrime(size); _bm.Resize(_capacity);//調用BitMap的Resize調整大小 } void Set(const K& key) { size_t index1 = HashFunc1()(key); size_t index2 = HashFunc2()(key); size_t index3 = HashFunc3()(key); size_t index4 = HashFunc4()(key); size_t index5 = HashFunc5()(key); size_t index6 = HashFunc6()(key); _bm.Set(index1 % _capacity);//設置的位為index1 % _capacity,調用BitMap的Set _bm.Set(index2 % _capacity); _bm.Set(index3 % _capacity); _bm.Set(index4 % _capacity); _bm.Set(index5 % _capacity); _bm.Set(index6 % _capacity); } bool Test(const K& key) { //只要存在一個為0就不存在,否則存在 size_t index1 = HashFunc1()(key); if (!_bm.Test(index1 % _capacity)) return false; size_t index2 = HashFunc2()(key); if(!_bm.Test(index2 % _capacity)) return false; size_t index3 = HashFunc3()(key); if(!_bm.Test(index3 % _capacity)) return false; size_t index4 = HashFunc4()(key); if(!_bm.Test(index4 % _capacity)) return false; size_t index5 = HashFunc5()(key); if(!_bm.Test(index5 % _capacity)) return false; size_t index6 = HashFunc6()(key); if(!_bm.Test(index6 % _capacity)) return false; return true; } private: BitMap _bm; size_t _capacity; }; void TestBloomFilter() { BloomFilter<> bf(50); bf.Set("Scen"); bf.Set("斯洛"); bf.Set("https://blog.51cto.com/user_index.php?action=addblog_new&job=modify&tid=1773181"); cout << "exist? " << bf.Test("Scen") << endl; cout << "exist? " << bf.Test("Scenluo") << endl; cout << "exist? " << bf.Test("斯洛") << endl; cout << "exist? " << bf.Test("https://blog.51cto.com/user_index.php?action=addblog_new&job=modify&tid=1773181") << endl; cout << "exist? " << bf.Test("https://blog.51cto.com/user_index.php?action=addblog_new&job=modify&tid=1773131") << endl; }
布隆過濾器的缺陷:
1、誤算率(False Positive)是其中之一。
隨著存入的元素數量增加,誤算率隨之增加。但是如果元素數量太少,則使用散列表足矣。所以我們用多個哈希表去存儲一個數據。那么問題又來了,我們是多用一些呢,還是少用一些。如果多用哈希表的話,如上面的題,一個哈希就需要500M,那么放的越多是不是越占內存啊。如果太少的話是不是誤算率就高啊,所以取個適中的。我的程序實現是取了六個哈希表。
2、如果當前位置為0肯定不存在,但是為1不一定存在。
一般布隆過濾器只支持設計,不支持刪除。可以通過引用計數,但空間浪費較大。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。