亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

二叉樹常考面試題

發布時間:2020-06-21 17:44:15 來源:網絡 閱讀:512 作者:張丹CTO 欄目:編程語言

  • 樹相關的一些概念。

樹是n(n>=0)個有限個數據的元素集合,形狀像一顆倒過來的樹。

結點:結點包含數據和指向其它結點的指針。

結點的度:結點擁有的子節點個數。

葉子節點:沒有子節點的節點(度為0)。

父子節點:一個節點father指向另一個節點child,則child為孩子節點,father為父親結點。

兄弟節點:具有相同父節點的節點互為兄弟節點。

節點的祖先:從根節點開始到該節點所經的所有節點都可以稱為該節點的祖先。

子孫:以某節點為根的子樹中任一節點都稱為該節點的子孫。

樹的高度:樹中距離根節點最遠結點的路徑長度


樹的存儲結構:

二叉樹常考面試題


  • 二叉樹的結構

二叉樹常考面試題

二叉樹:二叉樹是一棵特殊的樹,二叉樹每個節點最多有兩個孩子結點,分別稱為左孩子和右孩子。

滿二叉樹:高度為N的滿二叉樹有2^N - 1個節點的二叉樹。

完全二叉樹: 若設二叉樹的深度為h,除第 h 層外,其它各層 (1~h-1) 的結點數都達到最大個數,第 h 層所有的結點都連續集中在最左邊,這就是完全二叉樹

前序遍歷(先根遍歷):

(1):先訪問根節點;  

(2):前序訪問左子樹;

(3):前序訪問右子樹;

中序遍歷:       

(1):中序訪問左子樹

(2):訪問根節點;    

(3):中序訪問右子樹;  

后序遍歷(后根遍歷):

(1):后序訪問左子樹;

(2):后序訪問右子樹;

(3):訪問根節點;     

層序遍歷:         

(1):一層層節點依次遍歷。

下面是二叉樹的具體實現:                                

template<class T>

struct BinaryTreeNode

{

           BinaryTreeNode<T > *_left;

           BinaryTreeNode<T > *_right;

           T _data;


};


template<class T>

class BinaryTree

{

          Typedef BinaryTreeNode< T> Node;

protected:

          Node *_root;

public:

          BinaryTree() //無參構造函數

                   :_root( NULL)

          {

          }

          BinaryTree( const T *a, size_t size, const T& invalid)

          {

                    size_t index = 0;

                   _root = _CreateTree( a, size , invalid, index);

          }

protected:

          Node *__CreateTree( const T *a, size_t size, const T& invalid, size_t &index )

          {

                   Node *root = NULL;

                    if (index < size && a[index ] != invalid) //是有效值時

                   {

                             root = new Node(a [index]);

                             root->_left = __CreateTree( a, size , invalid, ++ index);

                             root->_right = __CreateTree( a, size , invalid, ++index);

          }

                    return root;

          }


//前序遍歷--------遞歸寫法,缺點是:有大量的壓棧開銷。

           void Prevorder(Node *root )

          {

                    if (root == NULL)

                   {

                              return;

                   }

                    else

                   {

                             cout << root->_data << " " ;

                             _prevorder( root->_left);

                             _prevorder( root->_right);

                   }

          }


//前序遍歷------------非遞歸寫法

//前序遍歷的非遞歸寫法思想:需要借助棧。

           void PrevOrderRonR()

          {

                    stack<Node*> s;

                    if (_root == NULL )//根結點為空的話直接return掉即可。

                   {

                              return;

                   }

                    if (_root)

                   {

                             s.push(_root); //根不為空的時候將根結點進行壓棧。

                   }

                    while (!s.empty())//判斷棧是否為空

                   {

                             Node *top = s.top(); //棧不為空,則取棧頂元素

                             cout << top->_data << " ";//然后進行訪問棧頂元素

                             s.pop(); //訪問完棧頂元素將其從棧中pop掉。

                              if (top->_right)//要根據棧進行先序遍歷,則必須是先訪問根節點,再訪問左子樹,最后訪問右子樹,因為棧是“后進先出的”,要想先訪問左子樹,則必須先入右子樹,再入左子樹。如果棧頂元素的右子樹不為空,

                             {

                                      s.push(top->_right); //棧頂的右子樹不為空,將其進行壓棧。

                             }

                              if (top->_left)

                             {

                                      s.push(top->_left); //棧頂的左子樹不為空,將其進行壓棧。

                             }

                             

                   }

                   cout << endl;

          }



//中序遍歷----------遞歸寫法

           void _Inorder(Node *root )

          {

                    if (root == NULL)

                   {

                              return;

                   }

                    else

                   {

                             _Inorder(Node * root)

                             {

                                       if (root == NULL )

                                      {

                                                 return;

                                      }

                                       else

                                      {

                                                _Inorder(root->_left);

                                                cout << root->_data << " " ;

                                                Inorder(root->_right);

                                      }

                             }

                   }

          }


//中序遍歷的非遞歸寫法,思想是:也是借助棧,主要核心是找最左結點,定義一個cur指針,讓它最開始指向_root。


           void TnOrderNonR()

          {

                    stack<Node*> s;

                   Node *cur = _root;

                    while (cur || !s.empty())

                   {

                             whie(cur) //找最左結點

                             {

                                      s.push(cur); //將cur壓棧。

                                      cur = cur->_left; //cur指向它的左孩子

                             }

                             Node *top = s.top();

                             cout << top->_data << " ";

                             s.pop();

                             cur = top->_right;

                   }

          }


//后序遍歷---------遞歸寫法

           void Postorder(Node *root )

          {

                    if (root == NULL)

                   {

                              return;

                   }

                    else

                   {

                             Postorder( root->_left);

                             Postorder( root->_right);

                             cout << root->_data << " " ;

                   }

          }


//后序遍歷----------非遞歸寫法,思想是:先找最左結點,找到后但不能訪問最左結點,要先判斷最左結點的右子樹是否為空,若為空, 則可以訪問最左結點,否則不可以訪問最左結點,需要訪問右子樹。

//可以訪問根結點的條件:上一層訪問的節點為右子樹。所以我們需要定義兩個指針prev與cur ,cur用來保存當前結點,prev用來保存上一層訪問的結點。        

           void PostOrderNonR()

          {

                    stack<Node*> s;

                   Node *prev = NULL;

                   Node *cur = _root;

                    while (cur || !s.empty())

                   {

                              while (cur)//找最左結點

                             {

                                      s.push(cur);

                                      cur = cur->_left;

                             }

                             Node *top = s.top(); //定義一個棧頂指針,用來指向棧頂元素。

                              if (top->_right == NULL || top->_right == prev)//棧頂節點的右子樹為空或者上一次訪問的節點為右子樹,則可以訪問棧頂元素。

                             {

                                      cout << top->_data << " " ;

                                      s.pop();

                                      prev = top;

                             }

                              else

                             {

                                      cur = top->_left;

                             }

                   }

          }

//二叉樹的層序遍歷(即是一層一層的進行遍歷):思想是:需要借助隊列,首先取隊頭,判斷它是否為空,若為空直接return;不為空的時候,進行入隊操作。

//如何取到隊頭?入數據還是入指針?最好入指針,需要保存數據或者節點的時候最好入指針。

           void LevelOrder()

          {

                    queue<Node*> q;

                    if (_root == NULL )

                   {

                              return;

                   }

                   q.push(_root);

                    while (!q.empty())

                   {

                             Node *front = q.front(); //取隊頭元素

                             q.pop();

                             cout << front->_data<< " ";

                              if (front->_left)//隊頭元素的左孩子不為空的時候,將它的左孩子壓入隊列

                             {

                                      q.push(front->_left);

                             }

                              if (front->_right)//隊頭元素的右孩子不為空的時候,將它的右孩子壓入隊列

                             {

                                      q.push(front->_right);

                             }

                   }


                   

          }



           size_t _Depth(Node *root )//思想:當前深度=(左子樹和右子樹中深度較大的一個)+1;

          {

                   if(root == NULL)

                   {

                  return 0;

              }

                    int left = _Depth(root->_left);

                    int right = _Depth(root ->_right);

                    return left > right ? left + 1 : right + 1;

          }


           size_t _GetKLevel(Node *root , size_t K)//取第K層結點,遞歸寫法。

          {

                    if (root == NULL)

                   {

                              return 0;

                   }

                    if (K == 1)

                   {

                              return 1;

                   }

                    return _GetKLevel(root ->_left, K - 1) + _GetKLevel(root->_right, K - 1);

          }

          


          Node* _Find(Node * root, const T& x)//查找結點為x的結點

          {

                    if (root == NULL)

                   {

                              return NULL ;

                   }

                    if (root ->_data == x)

                   {

                              return root ;

                   }

                   Node *ret = _Find( root->_left, x );

                    if (ret)

                   {

                              return ret;

                   }

                    else

                   {

                              return _Find(root ->_right, x);

                   }

          }



           size_t _leafsize(Node *root )//求葉子節點的個數,思想:左子樹的葉子結點數目+右子樹的葉子結點的數目。

          {

                    if (root == NULL)

                   {

                              return 0;

                   }

                    if (root ->_left == NULL&& root->_right == NULL )

                   {

                              return 1;

                   }

                    return _leafsize(root ->_left) + _leafsize(root->_right);

          }

           //遞歸即是=子問題+返回條件

           //方法一:

           size_t _size(Node *root )//結點的數目

          {

                    if (root == NULL)

                   {

                              return 0;

                   }

                    return _size(root ->_left) + _size(root->_right) + 1;

          }


           //方法二:遍歷法

           size_t _size(Node *root)

          {

                    static size_t sSize = 0;//此句代碼會讓程序有線程安全問題

                    if (root == NULL )

                   {

                              return sSize;

                   }

                   ++sSize;

                   _size(root->_left);

                   _size(root->_right);

                    return sSize;6

          }


};


向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

巴青县| 苍南县| 武定县| 枣阳市| 大同市| 登封市| 新巴尔虎左旗| 石首市| 信丰县| 苏尼特右旗| 许昌市| 承德市| 邢台县| 武威市| 河源市| 玉环县| 久治县| 磴口县| 崇左市| 伽师县| 佛山市| 阿拉尔市| 鄄城县| 富民县| 乳源| 沁源县| 来宾市| 瓮安县| 康马县| 固原市| 尼玛县| 沅江市| 开平市| 厦门市| 调兵山市| 邵武市| 无为县| 集贤县| 石景山区| 泾阳县| 垦利县|