您好,登錄后才能下訂單哦!
在C++中使用OpenCV庫進行圖像特征點優化,可以通過以下步驟實現:
#include<iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/xfeatures2d.hpp>
using namespace cv;
using namespace std;
void detectAndExtractFeatures(Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) {
// 創建一個SIFT特征檢測器
Ptr<Feature2D> detector = xfeatures2d::SIFT::create();
// 檢測特征點
detector->detect(image, keypoints);
// 計算特征點的描述子
detector->compute(image, keypoints, descriptors);
}
void matchFeatures(const Mat& descriptors1, const Mat& descriptors2, vector<DMatch>& matches) {
// 創建一個FLANN匹配器
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create(DescriptorMatcher::FLANNBASED);
// 使用KNN方法進行匹配,返回前2個最近鄰
vector<vector<DMatch>> knnMatches;
matcher->knnMatch(descriptors1, descriptors2, knnMatches, 2);
// 根據Lowe's ratio測試篩選匹配結果
const float ratioThreshold = 0.8f;
for (size_t i = 0; i < knnMatches.size(); ++i) {
if (knnMatches[i][0].distance< ratioThreshold * knnMatches[i][1].distance) {
matches.push_back(knnMatches[i][0]);
}
}
}
void optimizeMatches(const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2, vector<DMatch>& matches) {
// 將匹配結果轉換為點對
vector<Point2f> points1, points2;
for (const DMatch& match : matches) {
points1.push_back(keypoints1[match.queryIdx].pt);
points2.push_back(keypoints2[match.trainIdx].pt);
}
// 使用RANSAC方法優化點對
Mat fundamentalMatrix = findFundamentalMat(points1, points2, FM_RANSAC, 3.0, 0.99);
// 根據優化后的基礎矩陣篩選匹配結果
vector<DMatch> optimizedMatches;
for (size_t i = 0; i< matches.size(); ++i) {
if (fundamentalMatrix.at<float>(0, 0) * points1[i].x * points2[i].x +
fundamentalMatrix.at<float>(0, 1) * points1[i].x * points2[i].y +
fundamentalMatrix.at<float>(0, 2) * points1[i].x +
fundamentalMatrix.at<float>(1, 0) * points1[i].y * points2[i].x +
fundamentalMatrix.at<float>(1, 1) * points1[i].y * points2[i].y +
fundamentalMatrix.at<float>(1, 2) * points1[i].y +
fundamentalMatrix.at<float>(2, 0) * points2[i].x +
fundamentalMatrix.at<float>(2, 1) * points2[i].y +
fundamentalMatrix.at<float>(2, 2) > 0) {
optimizedMatches.push_back(matches[i]);
}
}
// 更新匹配結果
matches = optimizedMatches;
}
int main() {
// 讀取兩幅圖像
Mat image1 = imread("image1.jpg", IMREAD_GRAYSCALE);
Mat image2 = imread("image2.jpg", IMREAD_GRAYSCALE);
// 檢測和提取特征點
vector<KeyPoint> keypoints1, keypoints2;
Mat descriptors1, descriptors2;
detectAndExtractFeatures(image1, keypoints1, descriptors1);
detectAndExtractFeatures(image2, keypoints2, descriptors2);
// 匹配特征點
vector<DMatch> matches;
matchFeatures(descriptors1, descriptors2, matches);
// 優化特征點匹配結果
optimizeMatches(keypoints1, keypoints2, matches);
// 顯示匹配結果
Mat matchedImage;
drawMatches(image1, keypoints1, image2, keypoints2, matches, matchedImage);
imshow("Matched Image", matchedImage);
waitKey(0);
return 0;
}
這樣,你就可以使用OpenCV庫在C++中進行圖像特征點優化了。注意,這里使用的是SIFT特征檢測器,你可以根據需要替換為其他特征檢測器,如ORB、SURF等。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。