您好,登錄后才能下訂單哦!
在CNTK中實現卷積神經網絡進行圖像分類可以通過以下步驟:
import cntk as C
import numpy as np
def create_model(input, num_classes):
with C.layers.default_options(init=C.glorot_uniform()):
net = C.layers.Convolution2D(filter_shape=(5,5), num_filters=32, strides=(1,1), pad=True)(input)
net = C.layers.MaxPooling(filter_shape=(2,2), strides=(2,2))(net)
net = C.layers.Convolution2D(filter_shape=(5,5), num_filters=64, strides=(1,1), pad=True)(net)
net = C.layers.MaxPooling(filter_shape=(2,2), strides=(2,2))(net)
net = C.layers.Dense(1024)(net)
net = C.layers.Dense(num_classes, activation=None)(net)
return net
input_var = C.input_variable((3, 32, 32))
label_var = C.input_variable(num_classes)
model = create_model(input_var, num_classes)
loss = C.cross_entropy_with_softmax(model, label_var)
eval_error = C.classification_error(model, label_var)
lr_schedule = C.learning_rate_schedule(0.1, C.UnitType.minibatch)
learner = C.sgd(model.parameters, lr_schedule)
trainer = C.Trainer(model, (loss, eval_error), [learner])
for i in range(num_minibatches):
batch_input = ...
batch_labels = ...
trainer.train_minibatch({input_var: batch_input, label_var: batch_labels})
test_input = ...
test_labels = ...
test_error = trainer.test_minibatch({input_var: test_input, label_var: test_labels})
通過以上步驟,就可以在CNTK中實現卷積神經網絡進行圖像分類。可以根據具體的數據集和任務需求調整網絡結構和參數來優化模型性能。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。