您好,登錄后才能下訂單哦!
在Chainer中實現卷積神經網絡(Convolutional Neural Network,CNN)用于圖像識別的步驟如下:
import chainer
import chainer.functions as F
import chainer.links as L
class CNN(chainer.Chain):
def __init__(self):
super(CNN, self).__init__()
with self.init_scope():
self.conv1 = L.Convolution2D(None, 32, 3) # input channels, output channels, kernel size
self.conv2 = L.Convolution2D(None, 64, 3)
self.fc1 = L.Linear(None, 128) # fully connected layer
self.fc2 = L.Linear(None, 10) # output layer (10 classes for image recognition)
def __call__(self, x):
h = F.relu(self.conv1(x))
h = F.max_pooling_2d(h, 2)
h = F.relu(self.conv2(h))
h = F.max_pooling_2d(h, 2)
h = F.relu(self.fc1(h))
return self.fc2(h)
train, test = chainer.datasets.get_mnist()
model = L.Classifier(CNN())
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
train_iter = chainer.iterators.SerialIterator(train, batch_size=100, shuffle=True)
test_iter = chainer.iterators.SerialIterator(test, batch_size=100, repeat=False, shuffle=False)
updater = chainer.training.StandardUpdater(train_iter, optimizer)
trainer = chainer.training.Trainer(updater, (10, 'epoch'))
trainer.extend(chainer.training.extensions.Evaluator(test_iter, model))
trainer.extend(chainer.training.extensions.LogReport())
trainer.extend(chainer.training.extensions.PrintReport(['epoch', 'main/accuracy', 'validation/main/accuracy']))
trainer.extend(chainer.training.extensions.ProgressBar())
trainer.run()
通過以上步驟,您可以在Chainer中實現一個簡單的CNN模型用于圖像識別任務。您可以根據具體的需求和數據集對模型結構進行調整和優化。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。