亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Python怎么解析參數

發布時間:2023-05-12 15:56:19 來源:億速云 閱讀:91 作者:iii 欄目:編程語言

這篇文章主要介紹“Python怎么解析參數”,在日常操作中,相信很多人在Python怎么解析參數問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”Python怎么解析參數”的疑惑有所幫助!接下來,請跟著小編一起來學習吧!

先決條件

在下面的代碼中,我將使用 Visual Studio Code,這是一個非常高效的集成 Python 開發環境。這個工具的美妙之處在于它通過安裝擴展支持每種編程語言,集成終端并允許同時處理大量 Python 腳本和 Jupyter 筆記本。

使用 argparse

Python怎么解析參數

就像上圖所示,我們有一個標準的結構來組織我們的小項目:

  • 包含我們數據集的名為 data 的文件夾

  • train.py 文件

  • 用于指定超參數的 options.py 文件

首先,我們可以創建一個文件 train.py,在其中我們有導入數據、在訓練數據上訓練模型并在測試集上對其進行評估的基本程序:

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error
from options import train_options
df = pd.read_csv('datahour.csv')
print(df.head())
opt = train_options()
X=df.drop(['instant','dteday','atemp','casual','registered','cnt'],axis=1).values
y =df['cnt'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
if opt.normalize == True:
 scaler = StandardScaler()
 X = scaler.fit_transform(X)
rf = RandomForestRegressor(n_estimators=opt.n_estimators,max_features=opt.max_features,max_depth=opt.max_depth)
model = rf.fit(X_train,y_train)
y_pred = model.predict(X_test)
rmse = np.sqrt(mean_squared_error(y_pred, y_test))
mae = mean_absolute_error(y_pred, y_test)
print("rmse: ",rmse)
print("mae: ",mae)

在代碼中,我們還導入了包含在 options.py 文件中的 train_options 函數。后一個文件是一個 Python 文件,我們可以從中更改 train.py 中考慮的超參數:

import argparse
def train_options():
 parser = argparse.ArgumentParser()
 parser.add_argument("--normalize", default=True, type=bool, help='maximum depth')
 parser.add_argument("--n_estimators", default=100, type=int, help='number of estimators')
 parser.add_argument("--max_features", default=6, type=int, help='maximum of features',)
 parser.add_argument("--max_depth", default=5, type=int,help='maximum depth')
 opt = parser.parse_args()
 return opt

在這個例子中,我們使用了 argparse 庫,它在解析命令行參數時非常流行。首先,我們初始化解析器,然后,我們可以添加我們想要訪問的參數。

這是運行代碼的示例:

python train.py

Python怎么解析參數

要更改超參數的默認值,有兩種方法。第一個選項是在 options.py 文件中設置不同的默認值。另一種選擇是從命令行傳遞超參數值:

python train.py --n_estimators 200

我們需要指定要更改的超參數的名稱和相應的值。

python train.py --n_estimators 200 --max_depth 7

使用 JSON 文件

Python怎么解析參數

和前面一樣,我們可以保持類似的文件結構。在這種情況下,我們將 options.py 文件替換為 JSON 文件。換句話說,我們想在 JSON 文件中指定超參數的值并將它們傳遞給 train.py 文件。與 argparse 庫相比,JSON 文件可以是一種快速且直觀的替代方案,它利用鍵值對來存儲數據。下面我們創建一個 options.json 文件,其中包含我們稍后需要傳遞給其他代碼的數據。

{
"normalize":true,
"n_estimators":100,
"max_features":6,
"max_depth":5
}

如上所見,它與 Python 字典非常相似。但是與字典不同的是,它包含文本/字符串格式的數據。此外,還有一些語法略有不同的常見數據類型。例如,布爾值是 false/true,而 Python 識別 False/True。JSON 中其他可能的值是數組,它們用方括號表示為 Python 列表。

在 Python 中使用 JSON 數據的美妙之處在于,它可以通過 load 方法轉換成 Python 字典:

f = open("options.json", "rb")
parameters = json.load(f)

要訪問特定項目,我們只需要在方括號內引用它的鍵名:

if parameters["normalize"] == True:
 scaler = StandardScaler()
 X = scaler.fit_transform(X)
rf=RandomForestRegressor(n_estimators=parameters["n_estimators"],max_features=parameters["max_features"],max_depth=parameters["max_depth"],random_state=42)
model = rf.fit(X_train,y_train)
y_pred = model.predict(X_test)

使用 YAML 文件

Python怎么解析參數

最后一種選擇是利用 YAML 的潛力。與 JSON 文件一樣,我們將 Python 代碼中的 YAML 文件作為字典讀取,以訪問超參數的值。YAML 是一種人類可讀的數據表示語言,其中層次結構使用雙空格字符表示,而不是像 JSON 文件中的括號。下面我們展示 options.yaml 文件將包含的內容:

normalize: True
n_estimators: 100
max_features: 6
max_depth: 5

在 train.py 中,我們打開 options.yaml 文件,該文件將始終使用 load 方法轉換為 Python 字典,這一次是從 yaml 庫中導入的:

import yaml
f = open('options.yaml','rb')
parameters = yaml.load(f, Loader=yaml.FullLoader)

和前面一樣,我們可以使用字典所需的語法訪問超參數的值。

最后的想法

配置文件的編譯速度非常快,而 argparse 則需要為我們要添加的每個參數編寫一行代碼。

所以我們應該根據自己的不同情況來選擇最為合適的方式

例如,如果我們需要為參數添加注釋,JSON 是不合適的,因為它不允許注釋,而 YAML 和 argparse 可能非常適合。

到此,關于“Python怎么解析參數”的學習就結束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學習,快去試試吧!若想繼續學習更多相關知識,請繼續關注億速云網站,小編會繼續努力為大家帶來更多實用的文章!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

文登市| 札达县| 陕西省| 天门市| 迁安市| 西青区| 巨鹿县| 南开区| 吴川市| 明水县| 龙海市| 德化县| 光泽县| 营口市| 上思县| 隆尧县| 阿拉善盟| 商城县| 叙永县| 阜康市| 永年县| 邯郸市| 乾安县| 滦南县| 当雄县| 洪雅县| 绥江县| 尤溪县| 淮安市| 巩留县| 白朗县| 青田县| 房山区| 贵港市| 华蓥市| 涟水县| 梅州市| 博客| 张家港市| 文昌市| 六安市|