亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

大數據架構師從入門到精通 學習必看寶典

發布時間:2020-07-05 18:38:16 來源:網絡 閱讀:178 作者:a大數據 欄目:大數據

經常有初學者在博客和QQ問我,自己想往大數據方向發展,該學哪些技術,學習路線是什么樣的,覺得大數據很火,就業很好,薪資很高。如果自己很迷茫,為了這些原因想往大數據方向發展,也可以,那么我就想問一下,你的專業是什么,對于計算機/軟件,你的興趣是什么?是計算機專業,對操作系統、硬件、網絡、服務器感興趣?是軟件專業,對軟件開發、編程、寫代碼感興趣?還是數學、統計學專業,對數據和數字特別感興趣。
大數據架構師從入門到精通 學習必看寶典
640.webp.jpg

其實這就是想告訴你的大數據的三個發展方向,平臺搭建/優化/運維/監控、大數據開發/ 設計/ 架構、數據分析/挖掘。請不要問我哪個容易,哪個前景好,哪個錢多。

.在入門學習大數據的過程當中有遇見學習,行業,缺乏系統學習路線,系統學習規劃,歡迎你加入我的大數據學習交流裙:251956502 ,裙文件有我這幾年整理的大數據學習手冊,開發工具,PDF文檔書籍,你可以自行下載。

先扯一下大數據的4V特征:

數據量大,TB->PB

數據類型繁多,結構化、非結構化文本、日志、視頻、圖片、地理位置等;

商業價值高,但是這種價值需要在海量數據之上,通過數據分析與機器學習更快速的挖掘出來;

處理時效性高,海量數據的處理需求不再局限在離線計算當中。

現如今,正式為了應對大數據的這幾個特點,開源的大數據框架越來越多,越來越強,先列舉一些常見的:

文件存儲:Hadoop HDFS、Tachyon、KFS

離線計算:Hadoop MapReduce、Spark

流式、實時計算:Storm、Spark Streaming、S4、Heron

K-V、NOSQL數據庫:HBase、RedisMongoDB

資源管理:YARN、Mesos

日志收集:Flume、Scribe、Logstash、Kibana

消息系統:Kafka、StormMQ、ZeroMQ、RabbitMQ

查詢分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid

分布式協調服務:Zookeeper

集群管理與監控:Ambari、Ganglia、Nagios、Cloudera Manager

數據挖掘、機器學習:Mahout、Spark MLLib

數據同步:Sqoop

任務調度:Oozie

眼花了吧,上面的有30多種吧,別說精通了,全部都會使用的,估計也沒幾個。就我個人而言,主要經驗是在第二個方向(開發/設計/架構),且聽聽我的建議吧。

第一章:初識Hadoop

1.1 學會百度與Google

不論遇到什么問題,先試試搜索并自己解決。Google首選,翻不過去的,就用百度吧。

1.2 參考資料首選官方文檔

特別是對于入門來說,官方文檔永遠是首選文檔。相信搞這塊的大多是文化人,英文湊合就行,實在看不下去的,請參考第一步。

1.3 先讓Hadoop跑起來

Hadoop可以算是大數據存儲和計算的開山鼻祖,現在大多開源的大數據框架都依賴Hadoop或者與它能很好的兼容。

關于Hadoop,你至少需要搞清楚以下是什么:

Hadoop 1.0、Hadoop 2.0

MapReduce、HDFS

NameNode、DataNode

JobTracker、TaskTracker

Yarn、ResourceManager、NodeManager

自己搭建Hadoop,請使用第一步和第二步,能讓它跑起來就行。建議先使用安裝包命令行安裝,不要使用管理工具安裝。另外:Hadoop1.0知道它就行了,現在都用Hadoop 2.0.

1.4 試試使用Hadoop

HDFS目錄操作命令;上傳、下載文件命令;提交運行MapReduce示例程序;打開Hadoop WEB界面,查看Job運行狀態,查看Job運行日志。知道Hadoop的系統日志在哪里。

1.5 你該了解它們的原理了

MapReduce:如何分而治之;HDFS:數據到底在哪里,什么是副本;

Yarn到底是什么,它能干什么;NameNode到底在干些什么;Resource Manager到底在干些什么;

1.6 自己寫一個MapReduce程序

請仿照WordCount例子,自己寫一個(照抄也行)WordCount程序,

打包并提交到Hadoop運行。你不會Java?Shell、Python都可以,有個東西叫Hadoop Streaming。如果你認真完成了以上幾步,恭喜你,你的一只腳已經進來了。

第二章:更高效的WordCount

2.1 學點SQL吧

你知道數據庫嗎?你會寫SQL嗎?如果不會,請學點SQL吧。

2.2 SQL版WordCount

在1.6中,你寫(或者抄)的WordCount一共有幾行代碼?給你看看我的:

SELECT word,COUNT(1) FROM wordcount GROUP BY word;

這便是SQL的魅力,編程需要幾十行,甚至上百行代碼,我這一句就搞定;使用SQL處理分析Hadoop上的數據,方便、高效、易上手、更是趨勢。不論是離線計算還是實時計算,越來越多的大數據處理框架都在積極提供SQL接口。

2.3 SQL On Hadoop之Hive

什么是Hive?官方給的解釋如下:The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax.

為什么說Hive是數據倉庫工具,而不是數據庫工具呢?有的朋友可能不知道數據倉庫,數據倉庫是邏輯上的概念,底層使用的是數據庫,數據倉庫中的數據有這兩個特點:最全的歷史數據(海量)、相對穩定的;所謂相對穩定,指的是數據倉庫不同于業務系統數據庫,數據經常會被更新,數據一旦進入數據倉庫,很少會被更新和刪除,只會被大量查詢。而Hive,也是具備這兩個特點,因此,Hive適合做海量數據的數據倉庫工具,而不是數據庫工具。

2.4 安裝配置Hive

請參考1.1 和 1.2 完成Hive的安裝配置。可以正常進入Hive命令行。

2.5 試試使用Hive

請參考1.1 和 1.2 ,在Hive中創建wordcount表,并運行2.2中的SQL語句。

在Hadoop WEB界面中找到剛才運行的SQL任務。看SQL查詢結果是否和1.4中MapReduce中的結果一致。

2.6 Hive是怎么工作的

明明寫的是SQL,為什么Hadoop WEB界面中看到的是MapReduce任務?

2.7 學會Hive的基本命令

創建、刪除表;加載數據到表;下載Hive表的數據;請參考1.2,學習更多關于Hive的語法和命令。

如果你已經按照《寫給大數據開發初學者的話》中第一章和第二章的流程認真完整的走了一遍,那么你應該已經具備以下技能和知識點:

MapReduce的原理(還是那個經典的題目,一個10G大小的文件,給定1G大小的內存,如何使用Java程序統計出現次數最多的10個單詞及次數);

HDFS讀寫數據的流程;向HDFS中PUT數據;從HDFS中下載數據;

自己會寫簡單的MapReduce程序,運行出現問題,知道在哪里查看日志;

會寫簡單的SELECT、WHERE、GROUP BY等SQL語句;

Hive SQL轉換成MapReduce的大致流程;

Hive中常見的語句:創建表、刪除表、往表中加載數據、分區、將表中數據下載到本地;

從上面的學習,你已經了解到,HDFS是Hadoop提供的分布式存儲框架,它可以用來存儲海量數據,MapReduce是Hadoop提供的分布式計算框架,它可以用來統計和分析HDFS上的海量數據,而Hive則是SQL On Hadoop,Hive提供了SQL接口,開發人員只需要編寫簡單易上手的SQL語句,Hive負責把SQL翻譯成MapReduce,提交運行。

此時,你的”大數據平臺”是這樣的:那么問題來了,海量數據如何到HDFS上呢?

第三章:把別處的數據搞到Hadoop上

此處也可以叫做數據采集,把各個數據源的數據采集到Hadoop上。

3.1 HDFS PUT命令

這個在前面你應該已經使用過了。put命令在實際環境中也比較常用,通常配合shell、python等腳本語言來使用。建議熟練掌握。

3.2 HDFS API

HDFS提供了寫數據的API,自己用編程語言將數據寫入HDFS,put命令本身也是使用API。

實際環境中一般自己較少編寫程序使用API來寫數據到HDFS,通常都是使用其他框架封裝好的方法。比如:Hive中的INSERT語句,Spark中的saveAsTextfile等。建議了解原理,會寫Demo。

3.3 Sqoop

Sqoop是一個主要用于Hadoop/Hive與傳統關系型數據庫,Oracle、MySQL、SQLServer等之間進行數據交換的開源框架。就像Hive把SQL翻譯成MapReduce一樣,Sqoop把你指定的參數翻譯成MapReduce,提交到Hadoop運行,完成Hadoop與其他數據庫之間的數據交換。

自己下載和配置Sqoop(建議先使用Sqoop1,Sqoop2比較復雜)。了解Sqoop常用的配置參數和方法。

使用Sqoop完成從MySQL同步數據到HDFS;使用Sqoop完成從MySQL同步數據到Hive表;如果后續選型確定使用Sqoop作為數據交換工具,那么建議熟練掌握,否則,了解和會用Demo即可。

3.4 Flume

Flume是一個分布式的海量日志采集和傳輸框架,因為“采集和傳輸框架”,所以它并不適合關系型數據庫的數據采集和傳輸。Flume可以實時的從網絡協議、消息系統、文件系統采集日志,并傳輸到HDFS上。

因此,如果你的業務有這些數據源的數據,并且需要實時的采集,那么就應該考慮使用Flume。

下載和配置Flume。使用Flume監控一個不斷追加數據的文件,并將數據傳輸到HDFS;Flume的配置和使用較為復雜,如果你沒有足夠的興趣和耐心,可以先跳過Flume。

3.5 阿里開源的DataX

之所以介紹這個,是因為我們公司目前使用的Hadoop與關系型數據庫數據交換的工具,就是之前基于DataX開發的,非常好用。

可以參考我的博文《異構數據源海量數據交換工具-Taobao DataX 下載和使用》。現在DataX已經是3.0版本,支持很多數據源。你也可以在其之上做二次開發。有興趣的可以研究和使用一下,對比一下它與Sqoop。

第四章:把Hadoop上的數據搞到別處去

Hive和MapReduce進行分析了。那么接下來的問題是,分析完的結果如何從Hadoop上同步到其他系統和應用中去呢?其實,此處的方法和第三章基本一致的。

4.1 HDFS GET命令

把HDFS上的文件GET到本地。需要熟練掌握。

4.2 HDFS API

同3.2.

4.3 Sqoop

同3.3.使用Sqoop完成將HDFS上的文件同步到MySQL;使用Sqoop完成將Hive表中的數據同步到MySQL。

4.4 DataX

同3.5. 如果你認真完成了上面的學習和實踐,此時,你的”大數據平臺”應該是這樣的:

如果你已經按照《寫給大數據開發初學者的話2》中第三章和第四章的流程認真完整的走了一遍,那么你應該已經具備以下技能和知識點:

知道如何把已有的數據采集到HDFS上,包括離線采集和實時采集;你已經知道sqoop(或者還有DataX)是HDFS和其他數據源之間的數據交換工具;你已經知道flume可以用作實時的日志采集。

從前面的學習,對于大數據平臺,你已經掌握的不少的知識和技能,搭建Hadoop集群,把數據采集到Hadoop上,使用Hive和MapReduce來分析數據,把分析結果同步到其他數據源。

接下來的問題來了,Hive使用的越來越多,你會發現很多不爽的地方,特別是速度慢,大多情況下,明明我的數據量很小,它都要申請資源,啟動MapReduce來執行。

第五章:快一點吧,我的SQL

其實大家都已經發現Hive后臺使用MapReduce作為執行引擎,實在是有點慢。因此SQL On Hadoop的框架越來越多,按我的了解,最常用的按照流行度依次為SparkSQL、Impala和Presto.這三種框架基于半內存或者全內存,提供了SQL接口來快速查詢分析Hadoop上的數據。關于三者的比較,請參考1.1.

我們目前使用的是SparkSQL,至于為什么用SparkSQL,原因大概有以下吧:使用Spark還做了其他事情,不想引入過多的框架;Impala對內存的需求太大,沒有過多資源部署。

5.1 關于Spark和SparkSQL

什么是Spark,什么是SparkSQL。

Spark有的核心概念及名詞解釋。

SparkSQL和Spark是什么關系,SparkSQL和Hive是什么關系。

SparkSQL為什么比Hive跑的快。

5.2 如何部署和運行SparkSQL

Spark有哪些部署模式?

如何在Yarn上運行SparkSQL?

使用SparkSQL查詢Hive中的表。Spark不是一門短時間內就能掌握的技術,因此建議在了解了Spark之后,可以先從SparkSQL入手,循序漸進。

關于Spark和SparkSQL,如果你認真完成了上面的學習和實踐,此時,你的”大數據平臺”應該是這樣的。

第六章:一夫多妻制

請不要被這個名字所誘惑。其實我想說的是數據的一次采集、多次消費。

在實際業務場景下,特別是對于一些監控日志,想即時的從日志中了解一些指標(關于實時計算,后面章節會有介紹),這時候,從HDFS上分析就太慢了,盡管是通過Flume采集的,但Flume也不能間隔很短就往HDFS上滾動文件,這樣會導致小文件特別多。

為了滿足數據的一次采集、多次消費的需求,這里要說的便是Kafka。

6.1 關于Kafka

什么是Kafka?Kafka的核心概念及名詞解釋。

6.2 如何部署和使用Kafka

使用單機部署Kafka,并成功運行自帶的生產者和消費者例子。使用Java程序自己編寫并運行生產者和消費者程序。Flume和Kafka的集成,使用Flume監控日志,并將日志數據實時發送至Kafka。

如果你認真完成了上面的學習和實踐,此時,你的”大數據平臺”應該是這樣的。

這時,使用Flume采集的數據,不是直接到HDFS上,而是先到Kafka,Kafka中的數據可以由多個消費者同時消費,其中一個消費者,就是將數據同步到HDFS。

如果你已經按照《寫給大數據開發初學者的話3》中第五章和第六章的流程認真完整的走了一遍,那么你應該已經具備以下技能和知識點:

為什么Spark比MapReduce快。

使用SparkSQL代替Hive,更快的運行SQL。

使用Kafka完成數據的一次收集,多次消費架構。

自己可以寫程序完成Kafka的生產者和消費者。

從前面的學習,你已經掌握了大數據平臺中的數據采集、數據存儲和計算、數據交換等大部分技能,而這其中的每一步,都需要一個任務(程序)來完成,各個任務之間又存在一定的依賴性,比如,必須等數據采集任務成功完成后,數據計算任務才能開始運行。如果一個任務執行失敗,需要給開發運維人員發送告警,同時需要提供完整的日志來方便查錯。

第七章:越來越多的分析任務

不僅僅是分析任務,數據采集、數據交換同樣是一個個的任務。這些任務中,有的是定時觸發,有點則需要依賴其他任務來觸發。當平臺中有幾百上千個任務需要維護和運行時候,僅僅靠crontab遠遠不夠了,這時便需要一個調度監控系統來完成這件事。調度監控系統是整個數據平臺的中樞系統,類似于AppMaster,負責分配和監控任務。

7.1 Apache Oozie

Oozie是什么?有哪些功能?

Oozie可以調度哪些類型的任務(程序)?

Oozie可以支持哪些任務觸發方式?

安裝配置Oozie。

7.2 其他開源的任務調度系統

Azkaban,light-task-scheduler,Zeus,等等。另外,我這邊是之前單獨開發的任務調度與監控系統,具體請參考《大數據平臺任務調度與監控系統》。如果你認真完成了上面的學習和實踐,此時,你的”大數據平臺”應該是這樣的:

第八章:我的數據要實時

在第六章介紹Kafka的時候提到了一些需要實時指標的業務場景,實時基本可以分為絕對實時和準實時,絕對實時的延遲要求一般在毫秒級,準實時的延遲要求一般在秒、分鐘級。對于需要絕對實時的業務場景,用的比較多的是Storm,對于其他準實時的業務場景,可以是Storm,也可以是Spark Streaming。當然,如果可以的話,也可以自己寫程序來做。

8.1 Storm

什么是Storm?有哪些可能的應用場景?

Storm由哪些核心組件構成,各自擔任什么角色?

Storm的簡單安裝和部署。

自己編寫Demo程序,使用Storm完成實時數據流計算。

8.2 Spark Streaming

什么是Spark Streaming,它和Spark是什么關系?

Spark Streaming和Storm比較,各有什么優缺點?

使用Kafka + Spark Streaming,完成實時計算的Demo程序。

至此,你的大數據平臺底層架構已經成型了,其中包括了數據采集、數據存儲與計算(離線和實時)、數據同步、任務調度與監控這幾大模塊。接下來是時候考慮如何更好的對外提供數據了。

第九章:我的數據要對外

通常對外(業務)提供數據訪問,大體上包含以下方面。

離線:比如,每天將前一天的數據提供到指定的數據源(DB、FILE、FTP)等;離線數據的提供可以采用Sqoop、DataX等離線數據交換工具。

實時:比如,在線網站的推薦系統,需要實時從數據平臺中獲取給用戶的推薦數據,這種要求延時非常低(50毫秒以內)。根據延時要求和實時數據的查詢需要,可能的方案有:HBase、Redis、MongoDB、ElasticSearch等。

OLAP分析:OLAP除了要求底層的數據模型比較規范,另外,對查詢的響應速度要求也越來越高,可能的方案有:Impala、Presto、SparkSQL、Kylin。如果你的數據模型比較規模,那么Kylin是最好的選擇。

即席查詢:即席查詢的數據比較隨意,一般很難建立通用的數據模型,因此可能的方案有:Impala、Presto、SparkSQL。

這么多比較成熟的框架和方案,需要結合自己的業務需求及數據平臺技術架構,選擇合適的。原則只有一個:越簡單越穩定的,就是最好的。

如果你已經掌握了如何很好的對外(業務)提供數據,那么你的“大數據平臺”應該是這樣的:

第十章:牛逼高大上的機器學習

關于這塊,我這個門外漢也只能是簡單介紹一下了。數學專業畢業的我非常慚愧,很后悔當時沒有好好學數學。在我們的業務中,遇到的能用機器學習解決的問題大概這么三類:

分類問題:包括二分類和多分類,二分類就是解決了預測的問題,就像預測一封郵件是否垃圾郵件;多分類解決的是文本的分類;

聚類問題:從用戶搜索過的關鍵詞,對用戶進行大概的歸類。

推薦問題:根據用戶的歷史瀏覽和點擊行為進行相關推薦。

大多數行業,使用機器學習解決的,也就是這幾類問題。入門學習線路,數學基礎;機器學習實戰,懂Python最好;SparkMlLib提供了一些封裝好的算法,以及特征處理、特征選擇的方法。

機器學習確實牛逼高大上,也是我學習的目標。那么,可以把機器學習部分也加進你的“大數據平臺”了。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

海安县| 文登市| 宁阳县| 灵台县| 凌源市| 宁安市| 汉寿县| 顺义区| 恭城| 湾仔区| 桑日县| 莎车县| 区。| 奉节县| 津市市| 牡丹江市| 凉山| 凭祥市| 新晃| 长沙市| 桃园县| 平江县| 轮台县| 蛟河市| 绵阳市| 叶城县| 沽源县| 南通市| 郧西县| 陵川县| 慈溪市| 南乐县| 博爱县| 文登市| 双峰县| 商丘市| 平泉县| 聂荣县| 东安县| 东乡| 灵川县|