亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Python解析參數的方法有哪些

發布時間:2022-07-20 14:37:25 來源:億速云 閱讀:163 作者:iii 欄目:編程語言

本篇內容主要講解“Python解析參數的方法有哪些”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“Python解析參數的方法有哪些”吧!

Python解析參數的方法有哪些

先決條件

在下面的代碼中,我將使用 Visual Studio Code,這是一個非常高效的集成 Python 開發環境。這個工具的美妙之處在于它通過安裝擴展支持每種編程語言,集成終端并允許同時處理大量 Python 腳本和 Jupyter 筆記本

數據集,使用的是 Kaggle 上的共享自行車數據集

使用 argparse

Python解析參數的方法有哪些
就像上圖所示,我們有一個標準的結構來組織我們的小項目:

  • 包含我們數據集的名為 data 的文件夾

  • train.py 文件

  • 用于指定超參數的 options.py 文件

首先,我們可以創建一個文件 train.py,在其中我們有導入數據、在訓練數據上訓練模型并在測試集上對其進行評估的基本程序:

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error

from options import train_options

df = pd.read_csv('data\hour.csv')
print(df.head())
opt = train_options()

X=df.drop(['instant','dteday','atemp','casual','registered','cnt'],axis=1).values
y =df['cnt'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

if opt.normalize == True:
    scaler = StandardScaler()
    X = scaler.fit_transform(X)
    
rf = RandomForestRegressor(n_estimators=opt.n_estimators,max_features=opt.max_features,max_depth=opt.max_depth)
model = rf.fit(X_train,y_train)
y_pred = model.predict(X_test)
rmse = np.sqrt(mean_squared_error(y_pred, y_test))
mae = mean_absolute_error(y_pred, y_test)
print("rmse: ",rmse)
print("mae: ",mae)

在代碼中,我們還導入了包含在 options.py 文件中的 train_options 函數。后一個文件是一個 Python 文件,我們可以從中更改 train.py 中考慮的超參數:

import argparse

def train_options():
    parser = argparse.ArgumentParser()
    parser.add_argument("--normalize", default=True, type=bool, help='maximum depth')
    parser.add_argument("--n_estimators", default=100, type=int, help='number of estimators')
    parser.add_argument("--max_features", default=6, type=int, help='maximum of features',)
    parser.add_argument("--max_depth", default=5, type=int,help='maximum depth')
    opt = parser.parse_args()
    return opt

在這個例子中,我們使用了 argparse 庫,它在解析命令行參數時非常流行。首先,我們初始化解析器,然后,我們可以添加我們想要訪問的參數。

這是運行代碼的示例:

python train.py

Python解析參數的方法有哪些
要更改超參數的默認值,有兩種方法。第一個選項是在 options.py 文件中設置不同的默認值。另一種選擇是從命令行傳遞超參數值:

python train.py --n_estimators 200

我們需要指定要更改的超參數的名稱和相應的值。

python train.py --n_estimators 200 --max_depth 7

使用 JSON 文件

Python解析參數的方法有哪些
和前面一樣,我們可以保持類似的文件結構。在這種情況下,我們將 options.py 文件替換為 JSON 文件。換句話說,我們想在 JSON 文件中指定超參數的值并將它們傳遞給 train.py 文件。與 argparse 庫相比,JSON 文件可以是一種快速且直觀的替代方案,它利用鍵值對來存儲數據。下面我們創建一個 options.json 文件,其中包含我們稍后需要傳遞給其他代碼的數據。

{
"normalize":true,
"n_estimators":100,
"max_features":6,
"max_depth":5 
}

如上所見,它與 Python 字典非常相似。但是與字典不同的是,它包含文本/字符串格式的數據。此外,還有一些語法略有不同的常見數據類型。例如,布爾值是 false/true,而 Python 識別 False/True。JSON 中其他可能的值是數組,它們用方括號表示為 Python 列表。

在 Python 中使用 JSON 數據的美妙之處在于,它可以通過 load 方法轉換成 Python 字典:

f = open("options.json", "rb")
parameters = json.load(f)

要訪問特定項目,我們只需要在方括號內引用它的鍵名:

if parameters["normalize"] == True:
    scaler = StandardScaler()
    X = scaler.fit_transform(X)
rf=RandomForestRegressor(n_estimators=parameters["n_estimators"],max_features=parameters["max_features"],max_depth=parameters["max_depth"],random_state=42)
model = rf.fit(X_train,y_train)
y_pred = model.predict(X_test)

使用 YAML 文件

Python解析參數的方法有哪些
最后一種選擇是利用 YAML 的潛力。與 JSON 文件一樣,我們將 Python 代碼中的 YAML 文件作為字典讀取,以訪問超參數的值。YAML 是一種人類可讀的數據表示語言,其中層次結構使用雙空格字符表示,而不是像 JSON 文件中的括號。下面我們展示 options.yaml 文件將包含的內容:

normalize: True 
n_estimators: 100
max_features: 6
max_depth: 5

在 train.py 中,我們打開 options.yaml 文件,該文件將始終使用 load 方法轉換為 Python 字典,這一次是從 yaml 庫中導入的:

import yaml
f = open('options.yaml','rb')
parameters = yaml.load(f, Loader=yaml.FullLoader)

和前面一樣,我們可以使用字典所需的語法訪問超參數的值。

到此,相信大家對“Python解析參數的方法有哪些”有了更深的了解,不妨來實際操作一番吧!這里是億速云網站,更多相關內容可以進入相關頻道進行查詢,關注我們,繼續學習!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

宝清县| 资源县| 敖汉旗| 苏尼特右旗| 梓潼县| 赤水市| 桦甸市| 莎车县| 淮北市| 类乌齐县| 潮州市| 上虞市| 临沧市| 石景山区| 武冈市| 彭山县| 奉贤区| 东莞市| 茂名市| 清河县| 万全县| 保亭| 金塔县| 永修县| 天等县| 兴国县| 万山特区| 鲁甸县| 东方市| 西乡县| 乐都县| 那坡县| 聂荣县| 苍梧县| 邵东县| 双江| 武城县| 垣曲县| 于田县| 新宁县| 六枝特区|