亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Python可視化調色盤如何繪制

發布時間:2022-06-14 15:09:35 來源:億速云 閱讀:184 作者:iii 欄目:開發技術

本篇內容主要講解“Python可視化調色盤如何繪制”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“Python可視化調色盤如何繪制”吧!

導入模塊并加載圖片

那么按照慣例,第一步一般都是導入模塊,可視化用到的模塊是matplotlib模塊,我們將圖片中的顏色抽取出來之后會保存在顏色映射表中,所以要使用到colormap模塊,同樣也需要導入進來

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.image as mpimg

from PIL import Image
from matplotlib.offsetbox import OffsetImage, AnnotationBbox

import cv2
import extcolors
from colormap import rgb2hex

然后我們先來加載一下圖片,代碼如下:

input_name = 'test_1.png'
img = plt.imread(input_name)
plt.imshow(img)
plt.axis('off')
plt.show()

output:

Python可視化調色盤如何繪制

提取顏色并整合成表格

我們調用的是extcolors模塊來從圖片中提取顏色,輸出的結果是RGB形式呈現出來的顏色,代碼如下

colors_x = extcolors.extract_from_path(img_url, tolerance=12, limit = 12)
colors_x

output:

([((3, 107, 144), 180316),
  ((17, 129, 140), 139930),
  ((89, 126, 118), 134080),
  ((125, 148, 154), 20636),
  ((63, 112, 126), 18728),
  ((207, 220, 226), 11037),
  ((255, 255, 255), 7496),
  ((28, 80, 117), 4972),
  ((166, 191, 198), 4327),
  ((60, 150, 140), 4197),
  ((90, 94, 59), 3313),
  ((56, 66, 39), 1669)],
 538200)

我們將上述的結果整合成一個DataFrame數據集,代碼如下:

def color_to_df(input_color):
    colors_pre_list = str(input_color).replace('([(', '').split(', (')[0:-1]
    df_rgb = [i.split('), ')[0] + ')' for i in colors_pre_list]
    df_percent = [i.split('), ')[1].replace(')', '') for i in colors_pre_list]

    # 將RGB轉換成十六進制的顏色
    df_color_up = [rgb2hex(int(i.split(", ")[0].replace("(", "")),
                           int(i.split(", ")[1]),
                           int(i.split(", ")[2].replace(")", ""))) for i in df_rgb]

    df = pd.DataFrame(zip(df_color_up, df_percent), columns=['c_code', 'occurence'])
    return df

我們嘗試調用上面我們自定義的函數,輸出的結果至DataFrame數據集當中

df_color = color_to_df(colors_x)
df_color

output:

Python可視化調色盤如何繪制

繪制圖表

接下來便是繪制圖表的階段了,用到的是matplotlib模塊,代碼如下:

fig, ax = plt.subplots(figsize=(90,90),dpi=10)
wedges, text = ax.pie(list_precent,
                      labels= text_c,
                      labeldistance= 1.05,
                      colors = list_color,
                      textprops={'fontsize': 120, 'color':'black'}
                     )
plt.setp(wedges, width=0.3)
ax.set_aspect("equal")
fig.set_facecolor('white')
plt.show()

output:

Python可視化調色盤如何繪制

從出來的餅圖中顯示了每種不同顏色的占比,我們更進一步將原圖放置在圓環當中,

imagebox = OffsetImage(img, zoom=2.3)
ab = AnnotationBbox(imagebox, (0, 0))
ax1.add_artist(ab)

output:

Python可視化調色盤如何繪制

最后制作一張調色盤,將原圖中的各種不同顏色都羅列開來,代碼如下:

## 調色盤
x_posi, y_posi, y_posi2 = 160, -170, -170
for c in list_color:
    if list_color.index(c) <= 5:
        y_posi += 180
        rect = patches.Rectangle((x_posi, y_posi), 360, 160, facecolor = c)
        ax2.add_patch(rect)
        ax2.text(x = x_posi+400, y = y_posi+100, s = c, fontdict={'fontsize': 190})
    else:
        y_posi2 += 180
        rect = patches.Rectangle((x_posi + 1000, y_posi2), 360, 160, facecolor = c)
        ax2.add_artist(rect)
        ax2.text(x = x_posi+1400, y = y_posi2+100, s = c, fontdict={'fontsize': 190})

ax2.axis('off')
fig.set_facecolor('white')
plt.imshow(bg)
plt.tight_layout()

output:

Python可視化調色盤如何繪制

實戰環節

這一塊兒是實戰環節,我們將上述所有的代碼封裝成一個完整的函數:

def exact_color(input_image, resize, tolerance, zoom):
    output_width = resize
    img = Image.open(input_image)
    if img.size[0] >= resize:
        wpercent = (output_width/float(img.size[0]))
        hsize = int((float(img.size[1])*float(wpercent)))
        img = img.resize((output_width,hsize), Image.ANTIALIAS)
        resize_name = 'resize_'+ input_image
        img.save(resize_name)
    else:
        resize_name = input_image

    fig.set_facecolor('white')
    ax2.axis('off')
    bg = plt.imread('bg.png')
    plt.imshow(bg)
    plt.tight_layout()
    return plt.show()
exact_color('test_2.png', 900, 12, 2.5)

output:

Python可視化調色盤如何繪制

到此,相信大家對“Python可視化調色盤如何繪制”有了更深的了解,不妨來實際操作一番吧!這里是億速云網站,更多相關內容可以進入相關頻道進行查詢,關注我們,繼續學習!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

石首市| 达日县| 安化县| 凌云县| 公安县| 庄河市| 巴塘县| 璧山县| 凌源市| 堆龙德庆县| 合水县| 鹰潭市| 黑水县| 武川县| 长泰县| 宁南县| 中江县| 洛南县| 合作市| 大港区| 台州市| 抚远县| 湖北省| 百色市| 巩义市| 兰溪市| 固镇县| 沧州市| 盈江县| 梧州市| 宁武县| 呼伦贝尔市| 浦东新区| 尼勒克县| 呈贡县| 陇西县| 绥宁县| 海城市| 凤凰县| 敦化市| 北碚区|