您好,登錄后才能下訂單哦!
本篇內容主要講解“python的f.name_scope和tf.variable_scope函數有什么區別”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“python的f.name_scope和tf.variable_scope函數有什么區別”吧!
tf.name_scope()和tf.variable_scope()是兩個作用域,一般與兩個創建/調用變量的函數tf.variable() 和tf.get_variable()搭配使用。
為什么要使用兩個不同的作用域方式呢?其主要原因與變量共享相關。
變量共享主要涉及兩個函數:tf.Variable() 和tf.get_variable()
在tf.variable_scope的作用域下需要使用tf.get_variable()函數,這是因為tf.get_variable()擁有一個變量檢查機制,會檢測已經存在的變量是否設置為共享變量,當同名變量存在共享機制時,不會報錯,如果并未設置為共享變量,則報錯。
如果使用tf.Variable() 的話每次都會新建變量。但是很多時候我們希望重用一些變量,所以我們使用到了get_variable(),它會去搜索變量名,有就直接用,沒有再新建。
在進行變量共享的時候需要使用到標志reuse,當reuse = True時是可以共享,False時不可以共享。
tf.variable_scope( name_or_scope, default_name=None, values=None, initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, reuse=None, dtype=None, use_resource=None, constraint=None, auxiliary_name_scope=True )
其中:
1、name_or_scope:范圍的名稱。
2、default_name:如果name_or_scope參數為None,則使用默認的名稱,該名稱將是唯一的;如果提供了name_or_scope,它將不會被使用,因此它不是必需的,并且可以是None。
3、values:傳遞給操作函數的Tensor參數列表。
4、initializer:此范圍內變量的默認初始值設定項。
5、regularizer:此范圍內變量的默認正規化器。
6、caching_device:此范圍內變量的默認緩存設備。
7、partitioner:此范圍內變量的默認分區程序。
8、custom_getter:此范圍內的變量的默認自定義吸氣。
9、reuse:可以是True、None或tf.AUTO_REUSE;如果是True,即可以開始共享變量,變量重構用;如果是tf.AUTO_REUSE,則我們創建變量(如果它們不存在),否則返回它們(用于在第一輪創建變量);如果是None,則我們繼承父范圍的重用標志。
10、dtype:在此范圍中創建的變量類型。
import tensorflow as tf # 初始化第一個v1 with tf.variable_scope("scope1"): v1 = tf.get_variable("v1",[3,3],tf.float32,initializer=tf.constant_initializer(1)) print(v1.name) # 不同的作用域 with tf.variable_scope("scope2"): v1 = tf.get_variable("v1",[3,3],tf.float32,initializer=tf.constant_initializer(1)) print(v1.name) # 開始共享 with tf.variable_scope("scope1",reuse = True): v1_share = tf.get_variable("v1",[3,3],tf.float32,initializer=tf.constant_initializer(1)) print(v1_share.name)
運行結果為:
scope1/v1:0
scope2/v1:0
scope1/v1:0
如果在下部再加上
with tf.variable_scope("scope2"): v1_share = tf.get_variable("v1",[3,3],tf.float32,initializer=tf.constant_initializer(1)) print(v1_share.name)
此時沒有reuse,不能共享,程序報錯。
import tensorflow as tf # 使用AUTO_REUSE可以直接創建 # 如果reuse = True,初始化第一輪創建的時候會報錯 def demo(): with tf.variable_scope("demo", reuse=tf.AUTO_REUSE): v = tf.get_variable("v", [1]) return v v1 = demo() v2 = demo() print(v1.name)
運行結果為:
demo/v:0
demo/v:0
到此,相信大家對“python的f.name_scope和tf.variable_scope函數有什么區別”有了更深的了解,不妨來實際操作一番吧!這里是億速云網站,更多相關內容可以進入相關頻道進行查詢,關注我們,繼續學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。