亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

spark DAGScheduler、TaskSchedule、Executor執行task源碼分析

發布時間:2020-06-24 03:22:37 來源:網絡 閱讀:50495 作者:hffzkl 欄目:大數據

摘要

spark的調度一直是我想搞清楚的東西,以及有向無環圖的生成過程、task的調度、rdd的延遲執行是怎么發生的和如何完成的,還要就是RDD的compute都是在executor的哪個階段調用和執行我們定義的函數的。這些都非常的基礎和困難。花一段時間終于弄白了其中的奧秘。總結起來,以便以后繼續完善。spark的調度分為兩級調度:DAGSchedule和TaskSchedule。DAGSchedule是根據job來生成相互依賴的stages,然后把stages以TaskSet形式傳遞給TaskSchedule來進行任務的分發過程,里面的細節會慢慢的講解出來的,比較長。

本文目錄

1、spark的RDD邏輯執行鏈
2、spark的job的劃分、stage的劃分
3、spark的DAGScheduler的調度
4、spark的TaskSchedule的調度
5、executor如何執行task以及我們定義的函數

spark的RDD的邏輯執行鏈

都說spark進行延遲執行,通過RDD的DAG來生成相應的Stage等,RDD的DAG的形成過程,是通過依賴來完成的,每一個RDD通過轉換算子的時候都會生成一個和多個子RDD,在通過轉換算子的時候,在創建一個新的RDD的時候,也會創建他們之間的依賴關系。因此他們是通過Dependencies連接起來的,RDD的依賴不是我們的重點,如果想了解RDD的依賴,可以自行google,RDD的依賴分為:1:1的OneToOneDependency,m:1的RangeDependency,還有m:n的ShuffleDependencies,其中OneToOneDependency和RangeDependency又被稱為NarrowDependency,這里的1:1,m:1,m:n的粒度是對于RDD的分區而言的。
spark DAGScheduler、TaskSchedule、Executor執行task源碼分析

依賴中最根本的是保留了父RDD,其rdd的方法就是返回父RDD的方法。這樣其就形成了一個鏈表形式的結構,通過最后面的RDD根據依賴,可以向前回溯到所有的父類RDD。
我們以map為例,來看一下依賴是如何產生的。
spark DAGScheduler、TaskSchedule、Executor執行task源碼分析

通過map其實其實創建了一個MapPartitonsRDD的RDD
spark DAGScheduler、TaskSchedule、Executor執行task源碼分析
然后我們看一下MapPartitonsRDD的主構造函數,其又對RDD進行了賦值,其中父RDD就是上面的this對象指定的RDD,我們再看一下RDD這個類的構造函數:
spark DAGScheduler、TaskSchedule、Executor執行task源碼分析
其又調用了RDD的主構造函數
spark DAGScheduler、TaskSchedule、Executor執行task源碼分析
其實依賴都是在RDD的構造函數中形成的。
通過上面的依賴轉換就形成了RDD額DAG圖
生成了一個RDD的DAG圖:
spark DAGScheduler、TaskSchedule、Executor執行task源碼分析
spark的job的劃分、stage的劃分
spark的Application劃分job其實挺簡單的,一個Application劃分為幾個job,我們就要看這個Application中有多少個Action算子,一個Action算子對應一個job,這個可以通過源碼來看出來,轉換算子是形成一個或者多個RDD,而Action算子是觸發job的提交。
比如上面的map轉換算子就是這樣的
spark DAGScheduler、TaskSchedule、Executor執行task源碼分析
而Action算子是這樣的:
spark DAGScheduler、TaskSchedule、Executor執行task源碼分析
通過runJob方法提交作業。stage的劃分是根據是否進行shuflle過程來決定的,這個后面會細說。

spark的DAGScheduler的調度

當我們通過客戶端,向spark集群提交作業時,如果利用的資源管理器是yarn,那么客戶端向spark提交申請運行driver進程的機器,driver其實在spark中是沒有具體的類的,driver機器主要是用來運行用戶編寫的代碼的地方,完成DAGScheduler和TaskSchedule,追蹤task運行的狀態。記住,用戶編寫的主函數是在driver中運行的,但是RDD轉換和執行是在不同的機器上完成。其實driver主要負責作業的調度和分發。Action算子到stage的劃分和DAGScheduler的完成過程。
當我們在driver進程中運行用戶定義的main函數的時候,首先會創建SparkContext對象,這個是我們與spark集群進行交互的入口它會初始化很多運行需要的環境,最主要的是初始化了DAGScheduler和TaskSchedule。
spark DAGScheduler、TaskSchedule、Executor執行task源碼分析
我們以這樣的的一個RDD的邏輯執行圖來分析整個DAGScheduler的過程。
spark DAGScheduler、TaskSchedule、Executor執行task源碼分析
因為DAGScheduler發生在driver進程中,我們就沖Driver進程運行用戶定義的main函數開始。在上圖中RDD9是最后一個RDD并且其調用了Action算子,就會觸發作業的提交,其會調用SparkContext的runjob函數,其經過一系列的runJob的封裝,會調用DAGScheduler的runJob

在SparkContext中存在著runJob方法

----------------------------------------------

def runJob[T, U: ClassTag](
rdd: RDD[T], // rdd為上面提到的RDD邏輯執行圖中的RDD9
func: (TaskContext, Iterator[T]) => U,這個方法也是RDD9調用Action算子傳入的函數
partitions: Seq[Int],
resultHandler: (Int, U) => Unit): Unit = {
if (stopped.get()) {
throw new IllegalStateException("SparkContext has been shutdown")
}
val callSite = getCallSite
val cleanedFunc = clean(func)
logInfo("Starting job: " + callSite.shortForm)
if (conf.getBoolean("spark.logLineage", false)) {
logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
}
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
progressBar.foreach(_.finishAll())
rdd.doCheckpoint()
}

----------------------------------------------

DAGScheduler的runJob

----------------------------------------------

def runJob[T, U](
rdd: RDD[T], //RDD9
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): Unit = {
val start = System.nanoTime
//在這里會生成一個job的守護進程waiter,用來等待作業提交執行是否完成,其又調用了submitJob,其以下的代
//碼都是用來處運行結果的一些log日志信息
val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties)
ThreadUtils.awaitReady(waiter.completionFuture, Duration.Inf)
waiter.completionFuture.value.get match {
case scala.util.Success(_) =>
logInfo("Job %d finished: %s, took %f s".format
(waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
case scala.util.Failure(exception) =>
logInfo("Job %d failed: %s, took %f s".format
(waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
// SPARK-8644: Include user stack trace in exceptions coming from DAGScheduler.
val callerStackTrace = Thread.currentThread().getStackTrace.tail
exception.setStackTrace(exception.getStackTrace ++ callerStackTrace)
throw exception
}
}

----------------------------------------------

submitJob的源代碼

----------------------------------------------

def submitJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): JobWaiter[U] = {
// 檢查RDD的分區是否合法
val maxPartitions = rdd.partitions.length
partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
throw new IllegalArgumentException(
"Attempting to access a non-existent partition: " + p + ". " +
"Total number of partitions: " + maxPartitions)
}

val jobId = nextJobId.getAndIncrement()
if (partitions.size == 0) {
// Return immediately if the job is running 0 tasks
return new JobWaiter[U](this, jobId, 0, resultHandler)
}

assert(partitions.size > 0)
//這一塊是把我們的job繼續進行封裝到JobSubmitted,然后放入到一個進程中池里,spark會啟動一個線程來處理我
//們提交的作業
val func2 = func.asInstanceOf[(TaskContext, Iterator[]) => ]
val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
eventProcessLoop.post(JobSubmitted(
jobId, rdd, func2, partitions.toArray, callSite, waiter,
SerializationUtils.clone(properties)))
waiter
}

----------------------------------------------

在DAGScheduler類中有一個DAGSchedulerEventProcessLoop的類,用來接收處理DAGScheduler的消息事件
spark DAGScheduler、TaskSchedule、Executor執行task源碼分析
JobSubmitted對象,因此會執行第一個操作handleJobSubmitted,在這里我們要說一下,Stage的類型,在spark中有兩種類型的stage一種是ShuffleMapStage,和ResultStage,最后一個RDD對應的Stage是ResultStage,遇到Shuffle過程的RDD被稱為ShuffleMapStage。

----------------------------------------------

private[scheduler] def handleJobSubmitted(jobId: Int,
finalRDD: RDD[],//對應RDD9
func: (TaskContext, Iterator[
]) => _,
partitions: Array[Int],
callSite: CallSite,
listener: JobListener,
properties: Properties) {
var finalStage: ResultStage = null
try {
// 先創建ResultStage。
finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
} catch {
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
}

val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
clearCacheLocs()
logInfo("Got job %s (%s) with %d output partitions".format(
job.jobId, callSite.shortForm, partitions.length))
logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
logInfo("Parents of final stage: " + finalStage.parents)
logInfo("Missing parents: " + getMissingParentStages(finalStage))

val jobSubmissionTime = clock.getTimeMillis()
jobIdToActiveJob(jobId) = job
activeJobs += job
finalStage.setActiveJob(job)
val stageIds = jobIdToStageIds(jobId).toArray
val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
submitStage(finalStage)
}

----------------------------------------------

上面的createResultStage其實就是RDD轉換為Stage的過程,方法如下

----------------------------------------------

/*
創建ResultStage的時候,它會調用相關函數
*/
private def createResultStage(
rdd: RDD[], //對應上圖的RDD9
func: (TaskContext, Iterator[
]) => _,
partitions: Array[Int],
jobId: Int,
callSite: CallSite): ResultStage = {
val parents = getOrCreateParentStages(rdd, jobId)
val id = nextStageId.getAndIncrement()
val stage = new ResultStage(id, rdd, func, partitions, parents, jobId, callSite)
stageIdToStage(id) = stage
updateJobIdStageIdMaps(jobId, stage)
stage
}

/**

  • 形成ResultStage依賴的父Stage
    */
    private def getOrCreateParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = {
    getShuffleDependencies(rdd).map { shuffleDep =>
    getOrCreateShuffleMapStage(shuffleDep, firstJobId)
    }.toList
    }
    /**
  • 采用的是深度優先遍歷找到Action算子的父依賴中的寬依賴
  • 這個是最主要的方法,要看懂這個方法,其實后面的就好理解,最好結合這例子上面給出的RDD邏輯依賴圖,比*
  • 較容易看出來,根據上面的RDD邏輯依賴圖,其返回的ShuffleDependency就是RDD2和RDD1,RDD7和RDD6的依
    賴,如果存在A<-B<-C,這兩個都是shuffle依賴,那么對于C其只返回B的shuffle依賴,而不會返回A
    /
    private[scheduler] def getShuffleDependencies(
    rdd: RDD[]): HashSet[ShuffleDependency[, , ]] = {
    //用來存放依賴
    val parents = new HashSet[ShuffleDependency[, , ]]
    //遍歷過的RDD放入這個里面
    val visited = new HashSet[RDD[
    ]]
    //創建一個待遍歷RDD的棧結構
    val waitingForVisit = new ArrayStack[RDD[]]
    //壓入finalRDD,邏輯圖中的RDD9
    waitingForVisit.push(rdd)
    //循環遍歷這個棧結構
    while (waitingForVisit.nonEmpty) {
    val toVisit = waitingForVisit.pop()
    // 如果RDD沒有被遍歷過執行其中的代碼
    if (!visited(toVisit)) {
    //然后把其放入已經遍歷隊列中
    visited += toVisit
    //得到依賴,我們知道依賴中存放的有父RDD的對象
    toVisit.dependencies.foreach {
    //如果這個依賴是shuffle依賴,則放入返回隊列中
    case shuffleDep: ShuffleDependency[
    , , ] =>
    parents += shuffleDep
    case dependency =>
    //如果不是shuffle依賴,把其父RDD壓入待訪問棧中,從而進行循環
    waitingForVisit.push(dependency.rdd)
    }
    }
    }
    parents
    }
    /創建shuffleMapStage,根據上面得到的兩個Shuffle對象,分別創建了兩個shuffleMapStage
    /
    /
    def createShuffleMapStage(shuffleDep: ShuffleDependency[, , _], jobId: Int): ShuffleMapStage = {
    //這個RDD其實就是RDD1和RDD6
    val rdd = shuffleDep.rdd
    val numTasks = rdd.partitions.length
    val parents = getOrCreateParentStages(rdd, jobId) //查看這兩個ShuffleMapStage是否存在父Shuffle的Stage
    val id = nextStageId.getAndIncrement()
    //創建ShuffleMapStage,下面是更新一下SparkContext的狀態
    val stage = new ShuffleMapStage(
    id, rdd, numTasks, parents, jobId, rdd.creationSite, shuffleDep, mapOutputTracker)
    stageIdToStage(id) = stage
    shuffleIdToMapStage(shuffleDep.shuffleId) = stage
    updateJobIdStageIdMaps(jobId, stage)

    if (!mapOutputTracker.containsShuffle(shuffleDep.shuffleId)) {
    // Kind of ugly: need to register RDDs with the cache and map output tracker here
    // since we can't do it in the RDD constructor because # of partitions is unknown
    logInfo("Registering RDD " + rdd.id + " (" + rdd.getCreationSite + ")")
    mapOutputTracker.registerShuffle(shuffleDep.shuffleId, rdd.partitions.length)
    }
    stage
    }

    ----------------------------------------------

    通過上面的源代碼分析,結合RDD的邏輯執行圖,我們可以看出,這個job擁有三個Stage,一個ResultStage,兩個ShuffleMapStage,一個ShuffleMapStage中的RDD是RDD1,另一個stage中的RDD是RDD6,從而,以上完成了RDD到Stage的切分工作。當切分完成后在handleJobSubmitted這個方法的最后,調用提交stage的方法。

submitStage源代碼比較簡單,它會檢查我們當前的stage依賴的父stage是否已經執行完成,如果沒有執行完成會循環提交其父stage等待其父stage執行完成了,才提交我們當前的stage進行執行。

----------------------------------------------

private def submitStage(stage: Stage) {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
logDebug("submitStage(" + stage + ")")
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: " + missing)
if (missing.isEmpty) {
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
submitMissingTasks(stage, jobId.get)
} else {
for (parent <- missing) {
submitStage(parent)
}
waitingStages += stage
}
}
} else {
abortStage(stage, "No active job for stage " + stage.id, None)
}
}

----------------------------------------------

提交task的方法源代碼,我們按照剛才的三個stage中,提交的是前兩個stage的過程來看待這個源代碼。以包含RDD1的stage為例

----------------------------------------------

private def submitMissingTasks(stage: Stage, jobId: Int) {
logDebug("submitMissingTasks(" + stage + ")")
// Get our pending tasks and remember them in our pendingTasks entry
stage.pendingPartitions.clear()

// 計算需要計算的分區數
val partitionsToCompute: Seq[Int] = stage.findMissingPartitions()

// Use the scheduling pool, job group, description, etc. from an ActiveJob associated
// with this Stage
val properties = jobIdToActiveJob(jobId).properties

runningStages += stage

// 封裝stage的一些信息,得到stage到分區數的映射關系,即一個stage對應多少個分區需要計算
stage match {
  case s: ShuffleMapStage =>
    outputCommitCoordinator.stageStart(stage = s.id, maxPartitionId = s.numPartitions - 1)
  case s: ResultStage =>
    outputCommitCoordinator.stageStart(
      stage = s.id, maxPartitionId = s.rdd.partitions.length - 1)
}

//得到每個分區對應的具體位置,即分區的數據位于集群的哪臺機器上。
val taskIdToLocations: Map[Int, Seq[TaskLocation]] = try {
stage match {
case s: ShuffleMapStage =>
partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap
case s: ResultStage =>
partitionsToCompute.map { id =>
val p = s.partitions(id)
(id, getPreferredLocs(stage.rdd, p))
}.toMap
}
} catch {
case NonFatal(e) =>
stage.makeNewStageAttempt(partitionsToCompute.size)
listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))
abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
runningStages -= stage
return
}
// 這個把上面stage要計算的分區和每個分區對應的物理位置進行了從新封裝,放在了latestInfo里面
stage.makeNewStageAttempt(partitionsToCompute.size, taskIdToLocations.values.toSeq)
listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))

//序列化我們剛才得到的信息,以便在driver機器和work機器之間進行傳輸
var taskBinary: Broadcast[Array[Byte]] = null
try {
// For ShuffleMapTask, serialize and broadcast (rdd, shuffleDep).
// For ResultTask, serialize and broadcast (rdd, func).
val taskBinaryBytes: Array[Byte] = stage match {
case stage: ShuffleMapStage =>
JavaUtils.bufferToArray(
closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef))
case stage: ResultStage =>
JavaUtils.bufferToArray(closureSerializer.serialize((stage.rdd, stage.func): AnyRef))
}

  taskBinary = sc.broadcast(taskBinaryBytes)
} catch {
  // In the case of a failure during serialization, abort the stage.
  case e: NotSerializableException =>
    abortStage(stage, "Task not serializable: " + e.toString, Some(e))
    runningStages -= stage

    // Abort execution
    return
  case NonFatal(e) =>
    abortStage(stage, s"Task serialization failed: $e\n${Utils.exceptionString(e)}", Some(e))
    runningStages -= stage
    return
}

//封裝stage構成taskSet集合,ShuffleMapStage對應的task為ShuffleMapTask,而ResultStage對應的taskSet為ResultTask
val tasks: Seq[Task[_]] = try {
stage match {
case stage: ShuffleMapStage =>
partitionsToCompute.map { id =>
val locs = taskIdToLocations(id)
val part = stage.rdd.partitions(id)
new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, stage.latestInfo.taskMetrics, properties, Option(jobId),
Option(sc.applicationId), sc.applicationAttemptId)
}

  case stage: ResultStage =>
    partitionsToCompute.map { id =>
      val p: Int = stage.partitions(id)
      val part = stage.rdd.partitions(p)
      val locs = taskIdToLocations(id)
      new ResultTask(stage.id, stage.latestInfo.attemptId,
        taskBinary, part, locs, id, properties, stage.latestInfo.taskMetrics,
        Option(jobId), Option(sc.applicationId), sc.applicationAttemptId)
    }
}

} catch {
case NonFatal(e) =>
abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
runningStages -= stage
return
}

//提交task給TaskSchedule
if (tasks.size > 0) {
logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")
stage.pendingPartitions ++= tasks.map(_.partitionId)
logDebug("New pending partitions: " + stage.pendingPartitions)
taskScheduler.submitTasks(new TaskSet(
tasks.toArray, stage.id, stage.latestInfo.attemptId, jobId, properties))
stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
} else {
// Because we posted SparkListenerStageSubmitted earlier, we should mark
// the stage as completed here in case there are no tasks to run
markStageAsFinished(stage, None)

val debugString = stage match {
  case stage: ShuffleMapStage =>
    s"Stage ${stage} is actually done; " +
      s"(available: ${stage.isAvailable}," +
      s"available outputs: ${stage.numAvailableOutputs}," +
      s"partitions: ${stage.numPartitions})"
  case stage : ResultStage =>
    s"Stage ${stage} is actually done; (partitions: ${stage.numPartitions})"
}
logDebug(debugString)

submitWaitingChildStages(stage)

}
}

----------------------------------------------

到此,完成了整個DAGScheduler的調度。

spark的TaskSchedule的調度

spark的Task的調度,我們要明白其調度過程,其根據不同的資源管理器擁有不同的調度策略,因此也擁有不同的調度守護進程,這個守護進程管理著集群的資源信息,spark提供了一個基本的守護進程的類,來完成與driver和executor的交互:CoarseGrainedSchedulerBackend,它應該運行在集群資源管理器上,比如yarn等。他收集了集群work機器的一般資源信息。當我們形成tasks將要進行調度的時候,driver進程會與其通信,請求資源的分配和調度,其會把最優的work節點分配給task來執行其任務。而TaskScheduleImpl實現了task調度的過程,采用的調度算法默認的是FIFO的策略,也可以采用公平調度策略。
spark DAGScheduler、TaskSchedule、Executor執行task源碼分析

當我們提交task時,其會創建一個管理task的類TaskSetManager,然后把其加入到任務調度池中。

----------------------------------------------

override def submitTasks(taskSet: TaskSet) {
val tasks = taskSet.tasks
logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
this.synchronized {
// 創建taskSetManager,以下為更新一下狀態
val manager = createTaskSetManager(taskSet, maxTaskFailures)
val stage = taskSet.stageId
val stageTaskSets =
taskSetsByStageIdAndAttempt.getOrElseUpdate(stage, new HashMap[Int, TaskSetManager])
stageTaskSets(taskSet.stageAttemptId) = manager
val conflictingTaskSet = stageTaskSets.exists { case (, ts) =>
ts.taskSet != taskSet && !ts.isZombie
}
if (conflictingTaskSet) {
throw new IllegalStateException(s"more than one active taskSet for stage $stage:" +
s" ${stageTaskSets.toSeq.map{
._2.taskSet.id}.mkString(",")}")
}
//把封裝好的taskSet,加入到任務調度隊列中。
schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)

if (!isLocal && !hasReceivedTask) {
  starvationTimer.scheduleAtFixedRate(new TimerTask() {
    override def run() {
      if (!hasLaunchedTask) {
        logWarning("Initial job has not accepted any resources; " +
          "check your cluster UI to ensure that workers are registered " +
          "and have sufficient resources")
      } else {
        this.cancel()
      }
    }
  }, STARVATION_TIMEOUT_MS, STARVATION_TIMEOUT_MS)
}
hasReceivedTask = true

}
//這個地方就是向資源管理器發出請求,請求任務的調度
backend.reviveOffers()
}

/*

*這個方法是位于CoarseGrainedSchedulerBackend類中,driver進程會想集群管理器發送請求資源的請求。
/
override def reviveOffers() {
driverEndpoint.send(ReviveOffers)
}

----------------------------------------------

當其收到這個請求時,其會調用這樣的方法。

----------------------------------------------

override def receive: PartialFunction[Any, Unit] = {
case StatusUpdate(executorId, taskId, state, data) =>
scheduler.statusUpdate(taskId, state, data.value)
if (TaskState.isFinished(state)) {
executorDataMap.get(executorId) match {
case Some(executorInfo) =>
executorInfo.freeCores += scheduler.CPUS_PER_TASK
makeOffers(executorId)
case None =>
// Ignoring the update since we don't know about the executor.
logWarning(s"Ignored task status update ($taskId state $state) " +
s"from unknown executor with ID $executorId")
}
}
//發送的請求滿足這個條件
case ReviveOffers =>
makeOffers()

case KillTask(taskId, executorId, interruptThread) =>
executorDataMap.get(executorId) match {
case Some(executorInfo) =>
executorInfo.executorEndpoint.send(KillTask(taskId, executorId, interruptThread))
case None =>
// Ignoring the task kill since the executor is not registered.
logWarning(s"Attempted to kill task $taskId for unknown executor $executorId.")
}
}

/*

*這個方法是搜集集群上現在還在活著的機器的相關信息。并且進行封裝成WorkerOffer類,

  • 然后其會調用TaskSchedulerImpl中的resourceOffers方法,來進行篩選,篩選出符合請求資源的機器,來執行我們當前的任務
    /
    private def makeOffers() {
    // Filter out executors under killing
    val activeExecutors = executorDataMap.filterKeys(executorIsAlive)
    val workOffers = activeExecutors.map { case (id, executorData) =>
    new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
    }.toIndexedSeq
    launchTasks(scheduler.resourceOffers(workOffers))
    }

/*
得到集群中空閑機器的信息后,我們通過此方法來篩選出滿足我們這次任務要求的機器,然后返回TaskDescription類
*這個類封裝了task與excutor的相關信息

  • /
    def resourceOffers(offers: IndexedSeq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
    // Mark each slave as alive and remember its hostname
    // Also track if new executor is added
    var newExecAvail = false
    //檢查work是否已經存在了,把不存在的加入到work調度池中
    for (o <- offers) {
    if (!hostToExecutors.contains(o.host)) {
    hostToExecutors(o.host) = new HashSet[String]()
    }
    if (!executorIdToRunningTaskIds.contains(o.executorId)) {
    hostToExecutors(o.host) += o.executorId
    executorAdded(o.executorId, o.host)
    executorIdToHost(o.executorId) = o.host
    executorIdToRunningTaskIds(o.executorId) = HashSet[Long]()
    newExecAvail = true
    }
    for (rack <- getRackForHost(o.host)) {
    hostsByRack.getOrElseUpdate(rack, new HashSet[String]()) += o.host
    }
    }
    // 打亂work機器的順序,以免每次分配任務時都在同一個機器上進行。避免某一個work計算壓力太大。
    val shuffledOffers = Random.shuffle(offers)
    //對于每一work,創建一個與其核數大小相同的數組,數組的大小決定了這臺work上可以并行執行task的數目.
    val tasks = shuffledOffers.map(o => new ArrayBufferTaskDescription)
    //取出每臺機器的cpu核數
    val availableCpus = shuffledOffers.map(o => o.cores).toArray
    //從task任務調度池中,按照我們的調度算法,取出需要執行的任務
    val sortedTaskSets = rootPool.getSortedTaskSetQueue
    for (taskSet <- sortedTaskSets) {
    logDebug("parentName: %s, name: %s, runningTasks: %s".format(
    taskSet.parent.name, taskSet.name, taskSet.runningTasks))
    if (newExecAvail) {
    taskSet.executorAdded()
    }
    }
    // 下面的這個循環,是用來標記task根據work的信息來標定數據本地化的程度的。當我們在yarn資源管理器,以--driver-mode配置
    //為client時,我們就會在打出來的日志上看出每一臺機器上運行task的數據本地化程度。同時還會選擇每個task對應的work機器
    // NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
    for (taskSet <- sortedTaskSets) {
    var launchedAnyTask = false
    var launchedTaskAtCurrentMaxLocality = false
    for (currentMaxLocality <- taskSet.myLocalityLevels) {
    do {
    launchedTaskAtCurrentMaxLocality = resourceOfferSingleTaskSet(
    taskSet, currentMaxLocality, shuffledOffers, availableCpus, tasks)
    launchedAnyTask |= launchedTaskAtCurrentMaxLocality
    } while (launchedTaskAtCurrentMaxLocality)
    }
    if (!launchedAnyTask) {
    taskSet.abortIfCompletelyBlacklisted(hostToExecutors)
    }
    }

    if (tasks.size > 0) {
    hasLaunchedTask = true
    }
    //返回taskDescription對象
    return tasks
    }

/*
task選擇執行其任務的work其實是在這個函數中實現的,從這個可以看出,一臺work上其實是可以運行多個task,主要是看如何
*進行算法調度

  • /
    private def resourceOfferSingleTaskSet(
    taskSet: TaskSetManager,
    maxLocality: TaskLocality,
    shuffledOffers: Seq[WorkerOffer],
    availableCpus: Array[Int],
    tasks: IndexedSeq[ArrayBuffer[TaskDescription]]) : Boolean = {
    var launchedTask = false
    //循環所有的機器,找適合此機器的task
    for (i <- 0 until shuffledOffers.size) {
    val execId = shuffledOffers(i).executorId
    val host = shuffledOffers(i).host
    //判斷其剩余的cpu核數是否滿足我們的最低配置,滿足則為其分配任務,否則不為其分配任務。
    if (availableCpus(i) >= CPUS_PER_TASK) {
    try {
    //這個for中的resourOffer就是來判斷其標記任務數據本地化的程度的。task(i)其實是一個數組,數組大小和其cpu核心數大小相同。
    for (task <- taskSet.resourceOffer(execId, host, maxLocality)) {
    tasks(i) += task
    val tid = task.taskId
    taskIdToTaskSetManager(tid) = taskSet
    taskIdToExecutorId(tid) = execId
    executorIdToRunningTaskIds(execId).add(tid)
    availableCpus(i) -= CPUS_PER_TASK
    assert(availableCpus(i) >= 0)
    launchedTask = true
    }
    } catch {
    case e: TaskNotSerializableException =>
    logError(s"Resource offer failed, task set ${taskSet.name} was not serializable")
    // Do not offer resources for this task, but don't throw an error to allow other
    // task sets to be submitted.
    return launchedTask
    }
    }
    }
    return launchedTask
    }

    ----------------------------------------------

    以上完成了從TaskSet到task和work機器的綁定過程的所有任務。下面就是如何發送task到executor進行執行。在makeOffers()方法中調用了launchTasks方法,這個方法其實就是發送task作業到指定的機器上。只此,spark TaskSchedule的調度就此結束。

spark DAGScheduler、TaskSchedule、Executor執行task源碼分析

executor如何執行task以及我們定義的函數

當TaskSchedule完成對task的調度時,task需要在work機器上來進行執行。此時,work機器就會啟動一個Backend的守護進程,用來完成與driver和資源管理器的通信。這個Backend就是CoarseGrainedExecutorBackend,啟動的main主函數為,從main函數中可以看出,其主要進行參數的解析,然后運行run方法。

----------------------------------------------

def main(args: Array[String]) {
var driverUrl: String = null
var executorId: String = null
var hostname: String = null
var cores: Int = 0
var appId: String = null
var workerUrl: Option[String] = None
val userClassPath = new mutable.ListBuffer[URL]()
var argv = args.toList
while (!argv.isEmpty) {
argv match {
case ("--driver-url") :: value :: tail =>
driverUrl = value
argv = tail
case ("--executor-id") :: value :: tail =>
executorId = value
argv = tail
case ("--hostname") :: value :: tail =>
hostname = value
argv = tail
case ("--cores") :: value :: tail =>
cores = value.toInt
argv = tail
case ("--app-id") :: value :: tail =>
appId = value
argv = tail
case ("--worker-url") :: value :: tail =>
// Worker url is used in spark standalone mode to enforce fate-sharing with worker
workerUrl = Some(value)
argv = tail
case ("--user-class-path") :: value :: tail =>
userClassPath += new URL(value)
argv = tail
case Nil =>
case tail =>
// scalastyle:off println
System.err.println(s"Unrecognized options: ${tail.mkString(" ")}")
// scalastyle:on println
printUsageAndExit()
}
}
if (driverUrl == null || executorId == null || hostname == null || cores <= 0 ||
appId == null) {
printUsageAndExit()
}
run(driverUrl, executorId, hostname, cores, appId, workerUrl, userClassPath)
System.exit(0)
}
/*
可以看出,run方法只是進行了一些需要運行task所需要的環境進行配置。并且創建相應的運行環境。

  • /
    private def run(
    driverUrl: String,
    executorId: String,
    hostname: String,
    cores: Int,
    appId: String,
    workerUrl: Option[String],
    userClassPath: Seq[URL]) {

    Utils.initDaemon(log)

    SparkHadoopUtil.get.runAsSparkUser { () =>
    // Debug code
    Utils.checkHost(hostname)

    // Bootstrap to fetch the driver's Spark properties.
    val executorConf = new SparkConf
    val port = executorConf.getInt("spark.executor.port", 0)
    val fetcher = RpcEnv.create(
    "driverPropsFetcher",
    hostname,
    port,
    executorConf,
    new SecurityManager(executorConf),
    clientMode = true)
    val driver = fetcher.setupEndpointRefByURI(driverUrl)
    val cfg = driver.askWithRetrySparkAppConfig
    val props = cfg.sparkProperties ++ Seq[(String, String)](("spark.app.id", appId))
    fetcher.shutdown()

    // Create SparkEnv using properties we fetched from the driver.
    val driverConf = new SparkConf()
    for ((key, value) <- props) {
    // this is required for SSL in standalone mode
    if (SparkConf.isExecutorStartupConf(key)) {
    driverConf.setIfMissing(key, value)
    } else {
    driverConf.set(key, value)
    }
    }
    if (driverConf.contains("spark.yarn.credentials.file")) {
    logInfo("Will periodically update credentials from: " +
    driverConf.get("spark.yarn.credentials.file"))
    SparkHadoopUtil.get.startCredentialUpdater(driverConf)
    }

    val env = SparkEnv.createExecutorEnv(
    driverConf, executorId, hostname, port, cores, cfg.ioEncryptionKey, isLocal = false)

    env.rpcEnv.setupEndpoint("Executor", new CoarseGrainedExecutorBackend(
    env.rpcEnv, driverUrl, executorId, hostname, cores, userClassPath, env))
    workerUrl.foreach { url =>
    env.rpcEnv.setupEndpoint("WorkerWatcher", new WorkerWatcher(env.rpcEnv, url))
    }
    env.rpcEnv.awaitTermination()
    SparkHadoopUtil.get.stopCredentialUpdater()
    }
    }

    ----------------------------------------------

    其執行函數的調用過程如下:
    spark DAGScheduler、TaskSchedule、Executor執行task源碼分析

我們知道當我們完成TaskSchedule的調度時,是通過rpc發送了一個消息,如下圖所示,當work機器的Backend啟動以后,其會與driver進程進行rpc通信,當其收到LaunchTask的消息后,其會執行下面的代碼。
spark DAGScheduler、TaskSchedule、Executor執行task源碼分析
我們可以看出此方法存在很多的情況,根據接收到的不同的消息,執行不同的代碼。我們上面執行的是LaunchTask的請求。

----------------------------------------------

override def receive: PartialFunction[Any, Unit] = {
case RegisteredExecutor =>
logInfo("Successfully registered with driver")
try {
executor = new Executor(executorId, hostname, env, userClassPath, isLocal = false)
} catch {
case NonFatal(e) =>
exitExecutor(1, "Unable to create executor due to " + e.getMessage, e)
}

case RegisterExecutorFailed(message) =>
exitExecutor(1, "Slave registration failed: " + message)
//提交任務時,執行這樣的操作。
case LaunchTask(data) =>
if (executor == null) {
exitExecutor(1, "Received LaunchTask command but executor was null")
} else {
//先反序列化
val taskDesc = ser.deserializeTaskDescription
logInfo("Got assigned task " + taskDesc.taskId)
//然后執行launchTask操作。
executor.launchTask(this, taskId = taskDesc.taskId, attemptNumber = taskDesc.attemptNumber,
taskDesc.name, taskDesc.serializedTask)
}

case KillTask(taskId, _, interruptThread) =>
if (executor == null) {
exitExecutor(1, "Received KillTask command but executor was null")
} else {
executor.killTask(taskId, interruptThread)
}

case StopExecutor =>
stopping.set(true)
logInfo("Driver commanded a shutdown")
// Cannot shutdown here because an ack may need to be sent back to the caller. So send
// a message to self to actually do the shutdown.
self.send(Shutdown)

case Shutdown =>
stopping.set(true)
new Thread("CoarseGrainedExecutorBackend-stop-executor") {
override def run(): Unit = {
// executor.stop() will call SparkEnv.stop() which waits until RpcEnv stops totally.
// However, if executor.stop() runs in some thread of RpcEnv, RpcEnv won't be able to
// stop until executor.stop() returns, which becomes a dead-lock (See SPARK-14180).
// Therefore, we put this line in a new thread.
executor.stop()
}
}.start()
}

----------------------------------------------

Executor的相關源代碼,從源碼中我們可以看出,對于Task,其創建了一個TaskRunner的線程,并且把其放入到執行隊列中進行執行。

----------------------------------------------

def launchTask(
context: ExecutorBackend,
taskId: Long,
attemptNumber: Int,
taskName: String,
serializedTask: ByteBuffer): Unit = {
val tr = new TaskRunner(context, taskId = taskId, attemptNumber = attemptNumber, taskName,
serializedTask)
runningTasks.put(taskId, tr)
threadPool.execute(tr)
}

----------------------------------------------

從下面可以看出,其定義的就是一個線程,那我們就看一下這個線程的run方法。

spark DAGScheduler、TaskSchedule、Executor執行task源碼分析

----------------------------------------------

override def run(): Unit = {
//初始化線程運行需要的一些環境
val threadMXBean = ManagementFactory.getThreadMXBean
val taskMemoryManager = new TaskMemoryManager(env.memoryManager, taskId)
val deserializeStartTime = System.currentTimeMillis()
val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime
} else 0L
//得到當前進程的類加載器
Thread.currentThread.setContextClassLoader(replClassLoader)
val ser = env.closureSerializer.newInstance()
logInfo(s"Running $taskName (TID $taskId)")
//更新相關的狀態
execBackend.statusUpdate(taskId, TaskState.RUNNING, EMPTY_BYTE_BUFFER)
var taskStart: Long = 0
var taskStartCpu: Long = 0
startGCTime = computeTotalGcTime()

try {

//反序列化類相關的依賴,得到相關的參數
val (taskFiles, taskJars, taskProps, taskBytes) =
Task.deserializeWithDependencies(serializedTask)

  // Must be set before updateDependencies() is called, in case fetching dependencies
  // requires access to properties contained within (e.g. for access control).
  Executor.taskDeserializationProps.set(taskProps)

//更新依賴配置
updateDependencies(taskFiles, taskJars)
task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader)
task.localProperties = taskProps
task.setTaskMemoryManager(taskMemoryManager)

  // If this task has been killed before we deserialized it, let's quit now. Otherwise,
  // continue executing the task.
  if (killed) {
    // Throw an exception rather than returning, because returning within a try{} block
    // causes a NonLocalReturnControl exception to be thrown. The NonLocalReturnControl
    // exception will be caught by the catch block, leading to an incorrect ExceptionFailure
    // for the task.
    throw new TaskKilledException
  }

  logDebug("Task " + taskId + "'s epoch is " + task.epoch)

//追蹤緩存數據的位置
env.mapOutputTracker.updateEpoch(task.epoch)

  // Run the actual task and measure its runtime.
  taskStart = System.currentTimeMillis()
  taskStartCpu = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
    threadMXBean.getCurrentThreadCpuTime
  } else 0L
  var threwException = true

//運行任務的run方法來運行task,主要就是下面的task.run方法,它又會調用runTask方法來真正執行task,前面我們提到過,job變
//為stage有兩種,ShuffleMapStage和ResultStage,那么其對應的也有兩個Task:ShuffleMapTask和ResultTask,不同的task類型,執行不同的run方法。
val value = try {
val res = task.run(
taskAttemptId = taskId,
attemptNumber = attemptNumber,
metricsSystem = env.metricsSystem)
threwException = false
res
} finally {
//下面就是根據上面的運行結果,來進行一些判斷和日志的打出
val releasedLocks = env.blockManager.releaseAllLocksForTask(taskId)
val freedMemory = taskMemoryManager.cleanUpAllAllocatedMemory()

    if (freedMemory > 0 && !threwException) {
      val errMsg = s"Managed memory leak detected; size = $freedMemory bytes, TID = $taskId"
      if (conf.getBoolean("spark.unsafe.exceptionOnMemoryLeak", false)) {
        throw new SparkException(errMsg)
      } else {
        logWarning(errMsg)
      }
    }

    if (releasedLocks.nonEmpty && !threwException) {
      val errMsg =
        s"${releasedLocks.size} block locks were not released by TID = $taskId:\n" +
          releasedLocks.mkString("[", ", ", "]")
      if (conf.getBoolean("spark.storage.exceptionOnPinLeak", false)) {
        throw new SparkException(errMsg)
      } else {
        logWarning(errMsg)
      }
    }
  }
  val taskFinish = System.currentTimeMillis()
  val taskFinishCpu = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
    threadMXBean.getCurrentThreadCpuTime
  } else 0L

  // If the task has been killed, let's fail it.
  if (task.killed) {
    throw new TaskKilledException
  }

  val resultSer = env.serializer.newInstance()
  val beforeSerialization = System.currentTimeMillis()
  val valueBytes = resultSer.serialize(value)
  val afterSerialization = System.currentTimeMillis()

  // Deserialization happens in two parts: first, we deserialize a Task object, which
  // includes the Partition. Second, Task.run() deserializes the RDD and function to be run.
  task.metrics.setExecutorDeserializeTime(
    (taskStart - deserializeStartTime) + task.executorDeserializeTime)
  task.metrics.setExecutorDeserializeCpuTime(
    (taskStartCpu - deserializeStartCpuTime) + task.executorDeserializeCpuTime)
  // We need to subtract Task.run()'s deserialization time to avoid double-counting
  task.metrics.setExecutorRunTime((taskFinish - taskStart) - task.executorDeserializeTime)
  task.metrics.setExecutorCpuTime(
    (taskFinishCpu - taskStartCpu) - task.executorDeserializeCpuTime)
  task.metrics.setJvmGCTime(computeTotalGcTime() - startGCTime)
  task.metrics.setResultSerializationTime(afterSerialization - beforeSerialization)

  // Note: accumulator updates must be collected after TaskMetrics is updated
  val accumUpdates = task.collectAccumulatorUpdates()
  // TODO: do not serialize value twice
  val directResult = new DirectTaskResult(valueBytes, accumUpdates)
  val serializedDirectResult = ser.serialize(directResult)
  val resultSize = serializedDirectResult.limit

  // directSend = sending directly back to the driver
  val serializedResult: ByteBuffer = {
    if (maxResultSize > 0 && resultSize > maxResultSize) {
      logWarning(s"Finished $taskName (TID $taskId). Result is larger than maxResultSize " +
        s"(${Utils.bytesToString(resultSize)} > ${Utils.bytesToString(maxResultSize)}), " +
        s"dropping it.")
      ser.serialize(new IndirectTaskResult[Any](TaskResultBlockId(taskId), resultSize))
    } else if (resultSize > maxDirectResultSize) {
      val blockId = TaskResultBlockId(taskId)
      env.blockManager.putBytes(
        blockId,
        new ChunkedByteBuffer(serializedDirectResult.duplicate()),
        StorageLevel.MEMORY_AND_DISK_SER)
      logInfo(
        s"Finished $taskName (TID $taskId). $resultSize bytes result sent via BlockManager)")
      ser.serialize(new IndirectTaskResult[Any](blockId, resultSize))
    } else {
      logInfo(s"Finished $taskName (TID $taskId). $resultSize bytes result sent to driver")
      serializedDirectResult
    }
  }

  execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)

} catch {
  case ffe: FetchFailedException =>
    val reason = ffe.toTaskFailedReason
    setTaskFinishedAndClearInterruptStatus()
    execBackend.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason))

  case _: TaskKilledException =>
    logInfo(s"Executor killed $taskName (TID $taskId)")
    setTaskFinishedAndClearInterruptStatus()
    execBackend.statusUpdate(taskId, TaskState.KILLED, ser.serialize(TaskKilled))

  case _: InterruptedException if task.killed =>
    logInfo(s"Executor interrupted and killed $taskName (TID $taskId)")
    setTaskFinishedAndClearInterruptStatus()
    execBackend.statusUpdate(taskId, TaskState.KILLED, ser.serialize(TaskKilled))

  case CausedBy(cDE: CommitDeniedException) =>
    val reason = cDE.toTaskFailedReason
    setTaskFinishedAndClearInterruptStatus()
    execBackend.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason))

  case t: Throwable =>
    // Attempt to exit cleanly by informing the driver of our failure.
    // If anything goes wrong (or this was a fatal exception), we will delegate to
    // the default uncaught exception handler, which will terminate the Executor.
    logError(s"Exception in $taskName (TID $taskId)", t)

    // Collect latest accumulator values to report back to the driver
    val accums: Seq[AccumulatorV2[_, _]] =
      if (task != null) {
        task.metrics.setExecutorRunTime(System.currentTimeMillis() - taskStart)
        task.metrics.setJvmGCTime(computeTotalGcTime() - startGCTime)
        task.collectAccumulatorUpdates(taskFailed = true)
      } else {
        Seq.empty
      }

    val accUpdates = accums.map(acc => acc.toInfo(Some(acc.value), None))

    val serializedTaskEndReason = {
      try {
        ser.serialize(new ExceptionFailure(t, accUpdates).withAccums(accums))
      } catch {
        case _: NotSerializableException =>
          // t is not serializable so just send the stacktrace
          ser.serialize(new ExceptionFailure(t, accUpdates, false).withAccums(accums))
      }
    }
    setTaskFinishedAndClearInterruptStatus()
    execBackend.statusUpdate(taskId, TaskState.FAILED, serializedTaskEndReason)

    // Don't forcibly exit unless the exception was inherently fatal, to avoid
    // stopping other tasks unnecessarily.
    if (Utils.isFatalError(t)) {
      SparkUncaughtExceptionHandler.uncaughtException(t)
    }

} finally {
  runningTasks.remove(taskId)
}

}
}

----------------------------------------------

前面我們提到過,job變為stage有兩種,ShuffleMapStage和ResultStage,那么其對應的也有兩個Task:ShuffleMapTask和
ResultTask,不同的task類型,執行不同的Task.runTask方法。Task.run方法中調用了runTask的方法,這個方法在上面兩個Task類中都進行了重寫。
ShuffleMapTask的runTask方法

----------------------------------------------

override def runTask(context: TaskContext): MapStatus = {
// Deserialize the RDD using the broadcast variable.
//首先進行一些初始化操作
val threadMXBean = ManagementFactory.getThreadMXBean
val deserializeStartTime = System.currentTimeMillis()
val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime
} else 0L
val ser = SparkEnv.get.closureSerializer.newInstance()
//反序列化,這里的rdd,其實是我們進行shuffle之前的最后一個rdd,這個我們在前面已經說到的。
val (rdd, dep) = ser.deserialize[(RDD[], ShuffleDependency[, , ])](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)

_executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime
} else 0L
//下面就是把每一個shuffle之前的stage的最后一個rdd進行寫入操作,但是沒有看到task執行我們寫的函數,也沒有看到其調用compute函數以及rdd之間的管道執行也沒有體現出來,往下看,會揭露這些問題的面紗。
var writer: ShuffleWriter[Any, Any] = null
try {
val manager = SparkEnv.get.shuffleManager
writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[
<: Product2[Any, Any]]])
writer.stop(success = true).get
} catch {
case e: Exception =>
try {
if (writer != null) {
writer.stop(success = false)
}
} catch {
case e: Exception =>
log.debug("Could not stop writer", e)
}
throw e
}
}

----------------------------------------------

對于上面紅色部分的問題,我們在這里進行詳細的解釋。RDD會根據依賴關系來形成一個有向無環圖,通過最后一個RDD和其依賴,我們就可以反向查找其對應的所有父類。如果沒有shuffle過程,那么其就會形成管道,形成管道的好處就是所有RDD的中間結果不需要進行存儲,直接就把我們的定義的多個函數串連起來,從輸入到輸出中間結果不需要存儲,節省了時間和空間。同時我們也知道RDD的中間結果可以持久化到內存或者硬盤上,spark對于這個是可以追蹤到的。
spark DAGScheduler、TaskSchedule、Executor執行task源碼分析

通過上面的分析,我們可以看出,executor中
spark DAGScheduler、TaskSchedule、Executor執行task源碼分析
正是我們RDD往前回溯的開始。對于shuffle過程和ResultTask的runTask的執行過程以后會在慢慢跟進。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

呼和浩特市| 略阳县| 台东县| 广丰县| 梁山县| 沾化县| 乌审旗| 黔南| 东明县| 广灵县| 青海省| 会同县| 乌拉特中旗| 大渡口区| 连江县| 左贡县| 苏尼特右旗| 凤庆县| 文安县| 海林市| 汝南县| 类乌齐县| 南汇区| 休宁县| 抚远县| 同江市| 额济纳旗| 黄浦区| 正蓝旗| 屯门区| 崇文区| 台南市| 通海县| 甘洛县| 汉寿县| 义乌市| 米林县| 胶州市| 陕西省| 香河县| 通城县|