您好,登錄后才能下訂單哦!
這篇文章主要講解了“Linux內存怎么初始化”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“Linux內存怎么初始化”吧!
void __init paging_init(void)
{
phys_addr_t pgd_phys = early_pgtable_alloc();//分配一頁大小的物理內存放進pgd
pgd_t *pgd = pgd_set_fixmap(pgd_phys);
map_kernel(pgd);//將內核的各個段進行映射 .text .init .data .bss
map_mem(pgd);//將memblock子系統添加的物理內存進行映射(將物理地址映射到線性區域)
/*
* We want to reuse the original swapper_pg_dir so we don't have to
* communicate the new address to non-coherent secondaries in
* secondary_entry, and so cpu_switch_mm can generate the address with
* adrp+add rather than a load from some global variable.
*
* To do this we need to go via a temporary pgd.
*/
cpu_replace_ttbr1(__va(pgd_phys));//切換頁表
memcpy(swapper_pg_dir, pgd, PGD_SIZE);//將新建立的頁表內容替換swapper_pg_dir頁表內容
cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
pgd_clear_fixmap();
memblock_free(pgd_phys, PAGE_SIZE);
/*
* We only reuse the PGD from the swapper_pg_dir, not the pud + pmd
* allocated with it.
*/
memblock_free(__pa_symbol(swapper_pg_dir) + PAGE_SIZE,
SWAPPER_DIR_SIZE - PAGE_SIZE);
}
主要是完成通過memblock_add添加到系統中的物理內存映射,注意如果memblock設置了MEMBLOCK_NOMAP標志的話則不對其地址映射。
void __init bootmem_init(void)
{
unsigned long min, max;
min = PFN_UP(memblock_start_of_DRAM());
max = PFN_DOWN(memblock_end_of_DRAM());
early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
max_pfn = max_low_pfn = max;
arm64_numa_init();
/*
* Sparsemem tries to allocate bootmem in memory_present(), so must be
* done after the fixed reservations.
*/
arm64_memory_present();
sparse_init();
zone_sizes_init(min, max);
memblock_dump_all();
}
這個函數基本上完成了linux對物理內存“劃分”的初始化,包括node, zone, page frame,以及對應的數據結構。在講這個函數之前,我們需要了解下物理內存組織。
「Linux是如何組織物理內存的?」
「node」:
目前計算機系統有兩種體系結構:
「zone」:
ZONE的意思是把整個物理內存劃分為幾個區域,每個區域有特殊的含義
enum zone_type {
#ifdef CONFIG_ZONE_DMA
/*
* ZONE_DMA is used when there are devices that are not able
* to do DMA to all of addressable memory (ZONE_NORMAL). Then we
* carve out the portion of memory that is needed for these devices.
* The range is arch specific.
*
* Some examples
*
* Architecture Limit
* ---------------------------
* parisc, ia64, sparc <4G
* s390 <2G
* arm Various
* alpha Unlimited or 0-16MB.
*
* i386, x86_64 and multiple other arches
* <16M.
*/
ZONE_DMA,
#endif
#ifdef CONFIG_ZONE_DMA32
/*
* x86_64 needs two ZONE_DMAs because it supports devices that are
* only able to do DMA to the lower 16M but also 32 bit devices that
* can only do DMA areas below 4G.
*/
ZONE_DMA32,
#endif
/*
* Normal addressable memory is in ZONE_NORMAL. DMA operations can be
* performed on pages in ZONE_NORMAL if the DMA devices support
* transfers to all addressable memory.
*/
ZONE_NORMAL,
#ifdef CONFIG_HIGHMEM
/*
* A memory area that is only addressable by the kernel through
* mapping portions into its own address space. This is for example
* used by i386 to allow the kernel to address the memory beyond
* 900MB. The kernel will set up special mappings (page
* table entries on i386) for each page that the kernel needs to
* access.
*/
ZONE_HIGHMEM,
#endif
ZONE_MOVABLE,
#ifdef CONFIG_ZONE_DEVICE
ZONE_DEVICE,
#endif
__MAX_NR_ZONES
};
「page」:
代表一個物理頁,在內核中一個物理頁用一個struct page表示。
「page frame」:
為了描述一個物理page,內核使用struct page結構來表示一個物理頁。假設一個page的大小是4K的,內核會將整個物理內存分割成一個一個4K大小的物理頁,而4K大小物理頁的區域我們稱為page frame
「page frame num(pfn)」 :
pfn是對每個page frame的編號。故物理地址和pfn的關系是:
物理地址>>PAGE_SHIFT = pfn
「pfn和page的關系」:
內核中支持了好幾個內存模型:CONFIG_FLATMEM(平坦內存模型)CONFIG_DISCONTIGMEM(不連續內存模型)CONFIG_SPARSEMEM_VMEMMAP(稀疏的內存模型)目前ARM64使用的稀疏的類型模式
/* memmap is virtually contiguous. */
#define __pfn_to_page(pfn) (vmemmap + (pfn))
#define __page_to_pfn(page) (unsigned long)((page) - vmemmap)
系統啟動的時候,內核會將整個struct page映射到內核虛擬地址空間vmemmap的區域,所以我們可以簡單的認為struct page的基地址是vmemmap,則:
vmemmap+pfn的地址就是此struct page對應的地址。
感謝各位的閱讀,以上就是“Linux內存怎么初始化”的內容了,經過本文的學習后,相信大家對Linux內存怎么初始化這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。