亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

tsv csv txt json格式文件的處理方法是怎樣的

發布時間:2021-11-12 16:45:52 來源:億速云 閱讀:249 作者:柒染 欄目:大數據

tsv csv txt json格式文件的處理方法是怎樣的,相信很多沒有經驗的人對此束手無策,為此本文總結了問題出現的原因和解決方法,通過這篇文章希望你能解決這個問題。

對于tsv、csv、txt以及json類型的數據的處理方法一般可以使用torchtext中的TabularDataset進行處理;

數據的要求:

  1. tsv: 第一行fields字段名,使用tab隔開,其它行為數據,每個字段直接的數據使用tab隔開;

  2. csv: 第一行fields字段,其它行為數據

  3. json: 字典類型,每一行為一個字典,字典的key為fields,values為數據。

本次采用以下tsv格式的數據集:

sentiment-analysis-on-movie-reviews.zip

數據集的格式:

tsv csv txt json格式文件的處理方法是怎樣的

注意:如果test數據集中缺少某些字段,使用torchtext處理時會有問題,因此要保證train val和test數據集要處理的字段必需相同。

方法一: torchtext

任務:構造一個翻譯類型的數據集

inputs:[sequence english]

target:[sequence chinese]
from torchtext.data import Field, TabularDataset, BucketIterator
import torch


batch_size = 6
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


tokenize_x = lambda x: x.split()
tokenize_y = lambda y: y

TEXT = Field(sequential=True, use_vocab=True, tokenize=tokenize_x, lower=True,
                batch_first=True, init_token='<BOS>', eos_token='<EOS>')

LABEL = Field(sequential=False, use_vocab=False, tokenize=tokenize_y,
                batch_first=True, init_token=None, eos_token=None)

# fields = {'english': ('en', ENGLISH), 'chinese': ('cn', CHINESE)}
# The first of element tuple was tsv's fields_name
fields = [("PhraseId", None), ("SentenceId", None), ("Phrase", TEXT), ("Sentiment", LABEL)]


train_data, test_data = TabularDataset.splits(path='data',
                                              train='movie-sentiment_train.tsv',
                                              test='movie-sentiment_test.tsv',
                                              format='tsv',
                                              skip_header=True,
                                              fields=fields)

TEXT.build_vocab(train_data, max_size=10000, min_freq=2)

VOCAB_SIZE = len(TEXT.vocab)

# The operation of vocabulary
print("vocabulary size: ", VOCAB_SIZE)
print(TEXT.vocab.freqs)
print(TEXT.vocab.itos[:10])

for i, v in enumerate(TEXT.vocab.stoi):
    if i == 10:
        break
    print(v)

print(TEXT.vocab.stoi['apple'])
print('<BOS> indx is ', TEXT.vocab.stoi['<BOS>'])
print('<EOS> indx is ', TEXT.vocab.stoi['<EOS>'])

UNK_STR = TEXT.unk_token
PAD_STR = TEXT.pad_token
UNK_IDX = TEXT.vocab.stoi[UNK_STR]
PAD_IDX = TEXT.vocab.stoi[PAD_STR]

print(f'{UNK_STR} index is {UNK_IDX}')
print(f'{PAD_STR} index is {PAD_IDX}')

# The operation of datasets
print(len(train_data))
print(train_data[0].__dict__.keys())
print(train_data[0].__dict__.values())
# vars return attribute of object
print(vars(train_data.examples[0]))
print(train_data[0].Phrase)
print(train_data[0].Sentiment)


"""
batch_sizes: Tuple of batch sizes to use for the different splits, or None to use the same batch_size for all splits.
"""
train_iterator, test_iterator = BucketIterator.splits((train_data, test_data),
                                                      batch_size=32,
                                                      batch_sizes=None,
                                                      device=device,
                                                      repeat=False,
                                                      # shuffle=True,
                                                      sort_key=lambda x: len(x.Phrase),
                                                      sort=False,
                                                      sort_within_batch=True)
for batch in train_iterator:
    print(batch.Phrase.shape)
    print([TEXT.vocab.itos[idx] for idx in batch.Phrase[0]])
    print(batch.Sentiment)
    break

如果只有一個文本數據需要處理,將splits方法去除,修改以下初始化參數,修改的代碼如下:

fields = [("PhraseId", None), ("SentenceId", None), ("Phrase", TEXT), ("Sentiment", LABEL)]


train_data = TabularDataset(path='data/movie-sentiment_train.tsv',
                            format='tsv',
                            skip_header=True,
                            fields=fields)

train_iterator = BucketIterator(train_data,
                                batch_size=batch_size,
                                device=device,
                                shuffle=False,
                                repeat = False,
                                sort_key=lambda x: len(x.Phrase),
                                sort_within_batch=False)

fields是否需要use_vocab為True,即是否需要建立一個字典:

對于inputs數據而言,都需要進行詞典的建立,而對于labels而言,如果labels是數字類型的數據(實際是string類型),通常在iterator會使用int()強制轉換成longTensor()類型,如果labels不是數字類型的數據,需要建立一個詞典,這樣在iterator會字段轉換成longTensor類型。

關于TabularDataset中fieds字段傳入list和dict的區別:

tsv csv txt json格式文件的處理方法是怎樣的

list

構造fields時必須按照數據集中fields字段的順序依次構造,優點: 數據集第一行可以不寫字段名,缺點:train test val數據集所有字段必須完全相同。

TabularDataset中skip_header字段要根據數據集的第一行是否有fields名稱設置成True或者False。

fields = [("PhraseId", None), ("SentenceId", None), ("Phrase", TEXT), ("Sentiment", LABEL)]

dict

構造fields時可以根據自己的需要選擇性的選擇字段,優點:train test val數據集所有字段可以不完全相同,缺點:數據集的第一行必須有字段名稱。

TabularDataset中skip_header字段必須是False。

fields = {'Phrase': ('Phrase', TEXT), 'Sentiment': ('Sentiment', LABEL)}

BucketIterator中sort和shuffle問題:

shuffle參數用于是否打亂每個batch的取出順序,推薦使用默認參數,即train數據集打亂,其它數據集不打亂;
sort_key=lambda x: len(x.Phrase): 按照何種方式排序;
sort: 對所有數據集進行降序排序;推薦False.
sort_within_batch:對每個batch進行升序排序;推薦使用True.

tsv csv txt json格式文件的處理方法是怎樣的

方法二:手撕代碼

任務:構造一個翻譯類型的數據集

inputs:[english, chinese]

target:[(english, en_len, chinese, cn_len), (...)]

步驟:

  1. 分詞生成兩維的列表

  2. 分別創建詞典

  3. 根據詞典使用索引替換英文和中文詞

  4. 構造batch

  • 根據英文句子個數和batchSize構造batch的索引組

  • 根據創建的batch索引,構造batch數據,并返回每句話的長度list

import torch
import numpy as np
import nltk
import jieba
from collections import Counter


UNK_IDX = 0
PAD_IDX = 1
batch_size = 64

train_file = 'data/translate_train.txt'
dev_file = 'data/translate_dev.txt'

"""
數據格式: english \t  chinese
讀取英文中文翻譯文件, 句子開頭和結尾分別加上 <BOS> <EOS>
返回兩個列表
"""
def load_data(in_file):
    cn = []
    en = []
    with open(in_file, 'r', encoding='utf-8') as f:
        for line in f:
            line = line.strip().split("\t")
            en.append(['BOS'] + nltk.word_tokenize(line[0].lower()) + ['EOS'])
            # cn.append(['BOS'] + [c for c in line[1]] + ['EOS'])
            cn.append(['BOS'] + jieba.lcut(line[1]) + ['EOS'])
    return en, cn

"""
創建詞典
"""
def build_dict(sentences, max_words=50000):
    word_count = Counter()
    for sentence in sentences:
        for s in sentence:
            word_count[s] += 1
    ls = word_count.most_common(max_words)
    total_words = len(ls) + 2
    word_dict = {w[0]: index for index, w in enumerate(ls, 2)}
    word_dict['UNK'] = UNK_IDX
    word_dict['PAD'] = PAD_IDX
    return word_dict, total_words


# 把句子變成索引
def encode(en_sentences, cn_sentences, en_dict, cn_dict, sort_by_len=True):
    """
    Encode the sequences.
    """
    length = len(en_sentences)
    # 將句子的詞轉換成詞典對應的索引
    out_en_sentences = [[en_dict.get(w, 0) for w in sent] for sent in en_sentences]
    out_cn_sentences = [[cn_dict.get(w, 0) for w in sent] for sent in cn_sentences]

    def len_argsort(seq):
        return sorted(range(len(seq)), key=lambda x: len(seq[x]))

    if sort_by_len:
        sorted_index = len_argsort(out_en_sentences)
        out_en_sentences = [out_en_sentences[i] for i in sorted_index]
        out_cn_sentences = [out_cn_sentences[i] for i in sorted_index]

    return out_en_sentences, out_cn_sentences


def get_minibatches(n, minibatch_size, shuffle=False):
    idx_list = np.arange(0, n, minibatch_size) # [0, 1, ..., n-1]
    if shuffle:
        np.random.shuffle(idx_list)
    minibatches = []
    for idx in idx_list:
        minibatches.append(np.arange(idx, min(idx + minibatch_size, n)))
    return minibatches

def prepare_data(seqs, padding_idx):
    lengths = [len(seq) for seq in seqs]
    n_samples = len(seqs)
    max_len = np.max(lengths)

    x = np.full((n_samples, max_len), padding_idx).astype('int32')
    x_lengths = np.array(lengths).astype("int32")
    for idx, seq in enumerate(seqs):
        x[idx, :lengths[idx]] = seq
    return x, x_lengths #x_mask


def gen_examples(en_sentences, cn_sentences, batch_size):
    minibatches = get_minibatches(len(en_sentences), batch_size)
    all_ex = []
    for minibatch in minibatches:
        mb_en_sentences = [en_sentences[t] for t in minibatch]
        mb_cn_sentences = [cn_sentences[t] for t in minibatch]
        mb_x, mb_x_len = prepare_data(mb_en_sentences, PAD_IDX)
        mb_y, mb_y_len = prepare_data(mb_cn_sentences, PAD_IDX)
        all_ex.append((mb_x, mb_x_len, mb_y, mb_y_len))
    return all_ex


train_en, train_cn = load_data(train_file)
dev_en, dev_cn = load_data(dev_file)

en_dict, en_total_words = build_dict(train_en)
cn_dict, cn_total_words = build_dict(train_cn)

inv_en_dict = {v: k for k, v in en_dict.items()}
inv_cn_dict = {v: k for k, v in cn_dict.items()}


train_en, train_cn = encode(train_en, train_cn, en_dict, cn_dict)
dev_en, dev_cn = encode(dev_en, dev_cn, en_dict, cn_dict)

print(" ".join([inv_cn_dict[i] for i in train_cn[100]]))
print(" ".join([inv_en_dict[i] for i in train_en[100]]))


train_data = gen_examples(train_en, train_cn, batch_size)
dev_data = gen_examples(dev_en, dev_cn, batch_size)

print(len(train_data))
print(train_data[0])

看完上述內容,你們掌握tsv csv txt json格式文件的處理方法是怎樣的的方法了嗎?如果還想學到更多技能或想了解更多相關內容,歡迎關注億速云行業資訊頻道,感謝各位的閱讀!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

山阳县| 瑞安市| 湘潭市| 夹江县| 阿拉善盟| 通城县| 大关县| 乐至县| 望谟县| 绵阳市| 龙口市| 余江县| 花莲市| 晴隆县| 若羌县| 太康县| 本溪市| 阳江市| 潞城市| 阜宁县| 滁州市| 高州市| 遂溪县| 新邵县| 洛川县| 喀什市| 康乐县| 色达县| 陇川县| 崇州市| 广东省| 遂平县| 浦城县| 喀喇| 德昌县| 上思县| 尚志市| 南投县| 弥渡县| 丽水市| 南涧|