亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

數據挖掘領域經典算法——CART算法

發布時間:2020-08-03 06:26:42 來源:網絡 閱讀:277 作者:Hjiangxue 欄目:大數據

簡介

CART與C4.5類似,是決策樹算法的一種。此外,常見的決策樹算法還有ID3,這三者的不同之處在于特征的劃分:

ID3:特征劃分基于信息增益

C4.5:特征劃分基于信息增益比

CART:特征劃分基于基尼指數

基本思想

CART假設決策樹是二叉樹,內部結點特征的取值為“是”和“否”,左分支是取值為“是”的分支,右分支是取值為“否”的分支。這樣的決策樹等價于遞歸地二分每個特征,將輸入空間即特征空間劃分為有限個單元,并在這些單元上確定預測的概率分布,也就是在輸入給定的條件下輸出的條件概率分布。

CART算法由以下兩步組成:

決策樹生成:基于訓練數據集生成決策樹,生成的決策樹要盡量大;

決策樹剪枝:用驗證數據集對已生成的樹進行剪枝并選擇最優子樹,這時損失函數最小作為剪枝的標準。

CART決策樹的生成就是遞歸地構建二叉決策樹的過程。CART決策樹既可以用于分類也可以用于回歸。本文我們僅討論用于分類的CART。對分類樹而言,CART用Gini系數最小化準則來進行特征選擇,生成二叉樹。 CART生成算法如下:

輸入:訓練數據集D,停止計算的條件:

輸出:CART決策樹。

根據訓練數據集,從根結點開始,遞歸地對每個結點進行以下操作,構建二叉決策樹:

設結點的訓練數據集為D,計算現有特征對該數據集的Gini系數。此時,對每一個特征A,對其可能取的每個值a,根據樣本點對A=a的測試為“是”或 “否”將D分割成D1和D2兩部分,計算A=a時的Gini系數。

在所有可能的特征A以及它們所有可能的切分點a中,選擇Gini系數最小的特征及其對應的切分點作為最優特征與最優切分點。依最優特征與最優切分點,從現結點生成兩個子結點,將訓練數據集依特征分配到兩個子結點中去。

對兩個子結點遞歸地調用步驟l~2,直至滿足停止條件。

生成CART決策樹。

算法停止計算的條件是結點中的樣本個數小于預定閾值,或樣本集的Gini系數小于預定閾值(樣本基本屬于同一類),或者沒有更多特征。

代碼

代碼已在github上實現(調用sklearn),這里也貼出來
數據挖掘領域經典算法——CART算法

測試數據集為MNIST數據集,獲取地址為train.csv

運行結果
數據挖掘領域經典算法——CART算法

為了幫助大家讓學習變得輕松、高效,給大家免費分享一大批資料,幫助大家在成為大數據工程師,乃至架構師的路上披荊斬棘。在這里給大家推薦一個大數據學習交流圈:658558542 歡迎大家進×××流討論,學習交流,共同進步。

當真正開始學習的時候難免不知道從哪入手,導致效率低下影響繼續學習的信心。

但最重要的是不知道哪些技術需要重點掌握,學習時頻繁踩坑,最終浪費大量時間,所以有有效資源還是很有必要的。

最后祝福所有遇到瓶疾且不知道怎么辦的大數據程序員們,祝福大家在往后的工作與面試中一切順利。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

哈尔滨市| 会理县| 三原县| 宜宾县| 怀安县| 瓦房店市| 盱眙县| 永吉县| 南投市| 清镇市| 蓝山县| 射阳县| 阜城县| 定结县| 湘潭市| 额济纳旗| 子长县| 盘山县| 渝北区| 阜新| 马鞍山市| 平罗县| 固安县| 永新县| 新丰县| 电白县| 渝中区| 凤庆县| 南投市| 琼结县| 井冈山市| 衡山县| 英山县| 靖江市| 涞源县| 本溪市| 彰化市| 浏阳市| 兰溪市| 临夏县| 中方县|