亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

如何解析kafka卡頓事故排查過程

發布時間:2021-12-15 09:46:33 來源:億速云 閱讀:118 作者:柒染 欄目:大數據

如何解析kafka卡頓事故排查過程,針對這個問題,這篇文章詳細介紹了相對應的分析和解答,希望可以幫助更多想解決這個問題的小伙伴找到更簡單易行的方法。

由于一次功能上線后,導致某數據量急劇下滑,怎么實現排查!

1. 確認問題的真實性?

被數據部門告知,某數據量下滑嚴重,當時即知道問題的嚴重性。且該問題是在我的功能上線后產生,第一反應就是,我代碼哪里寫錯了? 但是,還得按流程來,通過各種維度數據對比請求量,實際落地量。確認問題!

其實該過程中,我們并沒有確認自己的數據量下滑。但是這也脫不了數據下滑的干系。只能進行下一步!

2. 檢查代碼,找有經驗的同學,對比原有功能差異點?

這個步驟其實,是有點盲目的感覺。因為第一步的排查并沒有找到足夠的證明說明問題出在我們,但是問題在于期間只有我們上過線,所以只能自我反省了。

不過幸好,這過程還真有用,果真發現了自己埋的一個坑,此坑確實會導致該數據量的下滑。趕緊修掉唄!

然后松了一口氣,以為搞好了。其實不然,數據量依然上不去。這就尷尬了!

我已經開始懷疑人生,難道代碼沒發上去?難道線上和本地某個地方不一樣?測試環境反復測試正確無誤。我真想直接把測試環境代碼弄到線上去,哎,算了吧,很多東西是不會以人的意志為轉移的,咱們還是理性點!別謀出路吧!

3. 直接坐到dba旁邊去吧,讓我們隨時關注數據量?

自我排查已經救不了自己了,那就上dba那里。麻煩幫我統計下上線后,數據量的變化,結果是沒多大差別。心想有可能是時間太短,看不出變化,等會兒再統計吧。依然沒有變化!我的神吶,定了鍋還在。

大的數據量不行,那我用自己的賬號來測試吧,操作完成后,觀察數據,發現有時有有時無!額,說不出啥了。

4. 本地調試吧?

原本以為,是線上問題,緊急處理下就好了。然而事實卻超出了我的預料,將驗證直接交給線上,是對用戶的不負責,是對數據的不負責。咱們還是從本地做起吧。

本地調試要走vpn,有點煩,但不管怎么樣,還是跑起來了。沒問題啊!這尷尬了。

然后,引出下一個議題!

5. 線上環境配置與測試環境不一樣?

然后我們努力找出其中的不同點,哪怕是多了一個文件,某個文件的更改時間點不一致,我們都想去試一下!當然了,為了穩妥起見,我們還是不能直接在線上驗證的,除非有足夠的證據說明線上的配置是有問題的。當然我們最終并沒有找到這樣的證據,只是將線上的所有東西都搬到測試環境來驗證,結果是暢通無阻!

還有一個證明此路不通的理由,之前的配置跑得好好的東西,難道會自己壞掉?不可能吧。此路不通!

6. 實在不行了,只能改代碼線上調試?

調試第一步,各自打日志!把之前請求打印不全的地方,加上完整日志,再發一版吧!有了日志,就有證據,但是真的是急中生錯啊,日志居然打得不對,將參數打印為了內存地址也真是夠了。

日志改好后,測試唄,繼續用自己的賬號。還是一樣,有時能能進有時不能(監控手段為dba起一個臨時的kafka消費者,然后將數據拉出來看)!那咋整呢?

難道是有的機器壞了?分配到壞的機器上去的請求就失敗,分配到正確機器的上去的請求就正確。然后吭哧吭哧搞了半天的數據驗證,曾經以為這是方向,結果又被打回。

7. 不行咱們就抓包吧?

tcpdump,一個網絡流抓包神器,lsof助攻一下。

抓包只是為了確認一個問題,客戶機器有發送請求到服務端機器,網絡流正常運轉!然后證明,客戶端機器有大量長連接到服務器,數據流發送接收正常(syn)。這至少說明了一點,客戶端是沒有問題的!那么就還剩一個問題,那就是服務端出問題了!我們堅信,當然要有證據嘛。

同理,我們在服務端機器上進行反向抓包,然后抓到了來自客戶端的包,很流暢嘛!額。。。

8. 不行,沒有思路了,重啟機器吧?

不,我說的是重啟服務。最近不是有改動嘛,按理誰改動重啟誰。然而這是沒有用的,因為之前的幾次發布早已重啟了n次。那咋整呢。只剩重啟服務端,kafka服務了唄,死馬當活馬醫吧!

重啟后,驗證唄。結果貌似還是發現有成功,有失敗!

9. 改異步請求為同步請求?

又沒思路了,我不甘心吶,為啥測試環境好好的,到線上就不行了呢?再想想差別在哪里?

得出的結論是,線上并發大,測試環境量無。然后發現這一塊代碼是由異步線程做的,會不會是這里有問題?

不管了,改成同步請求試試吧。再來一版!

別說,改為同步后,雖然用戶請求基本都慢死了,但是發現kafka請求確實存在了。難道真的是因為這個,那我們也不能這么改啊,用戶體驗是第一位的,為了這事改異步為同步,咱得吃不了兜著走啊。改回來繼續其他的吧!

10. 再回測試環境,壓測并發?

改還原為異步后,又回到當初有成功有失敗境地了。

既然懷疑線上高并發導致,那為什么不在測試環境高并發壓測一下呢?用shell腳本快速寫了一個循環請求腳本,大量請求到kafka后,并無一絲異常,到此并發問題取消。(for,nohup a.sh > /dev/null 2&>1 &)n 次即模擬n個并發請求

11. 再來細細檢查代碼吧?

都不知道查了幾遍了,但是還是要查啊,不然咋整呢,幾個人一起看代碼唄!

然而這并沒有什么卵用。

12. 拋開用戶行為,直接以命令行形式操作請求?

雖然用戶行為是最真實的驗證,但是也是比較麻煩的驗證。

我們就拋開各種中間環節,直接向kafka服務器發起請求!

分兩種方式,1 用現在的代碼去請求,2 用kafka自帶的請求方式請求。結果得到兩個不同的結果,用代碼的方式請求的數據,沒有成功,用kafka自己的請求方式,則毫秒級響應。哎,這是讓我又懷疑代碼?

13. 已走投無路,讓我們再看一眼數據吧?

真的是沒有思路了,只能再來看看數據,當打發時間了。

意外就在你想不到的時候發生了。數據已經恢復正常了!我擦!

倒推時間,倒推事件,是由于kafka重啟,導致數據回升的。

好吧,問題已經定位,kafka卡頓導致。咱們已經熬不住了,發個結論郵件,就先回去洗洗睡吧!

14. 為什么kafka會卡頓?

這才是問題的根本!只是我們當時已經沒有力氣再往下搞了!

結論是由于topic請求量過大,而partition過小,導致吞吐量下降。將partition改大之后,終于真正恢復正常!

關于如何解析kafka卡頓事故排查過程問題的解答就分享到這里了,希望以上內容可以對大家有一定的幫助,如果你還有很多疑惑沒有解開,可以關注億速云行業資訊頻道了解更多相關知識。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

辰溪县| 阜平县| 神池县| 康马县| 虎林市| 泰兴市| 绥滨县| 松阳县| 通化县| 金寨县| 定陶县| 泰兴市| 盐亭县| 张家界市| 长寿区| 抚州市| 赤峰市| 呈贡县| 涟水县| 元阳县| 疏附县| 阿鲁科尔沁旗| 略阳县| 安平县| 通河县| 洪泽县| 芦溪县| 东至县| 张家港市| 舒城县| 河间市| 永昌县| 运城市| 柞水县| 象州县| 垦利县| 竹北市| 咸丰县| 辉县市| 军事| 永定县|