亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

splunk VS elasticsearch

發布時間:2020-07-12 20:16:59 來源:網絡 閱讀:755 作者:sjfbjs 欄目:大數據

本文就架構,功能,產品線,概念等方面就ElasticSearch和Splunk做了一下全方位的對比,希望能夠大家在制定大數據搜索方案的時候有所幫助。

簡介

ElasticSearch?(1)(2)是一個基于Lucene的開源搜索服務。它提供了一個分布式多用戶能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java開發的,并作為Apache許可條款下的開放源碼發布,是當前流行的企業級搜索引擎。設計用于云計算中,能夠達到實時搜索,穩定,可靠,快速,安裝使用方便。

ELK是ElasticSearch,Logstash,Kibana的縮寫,分別提供搜索,數據接入和可視化功能,構成了Elastic的應用棧。

Splunk?是大數據領域第一家在納斯達克上市公司,Splunk提供一個機器數據的引擎。使用 Splunk 可收集、索引和利用所有應用程序、服務器和設備(物理、虛擬和云中)生成的快速移動型計算機數據 。從一個位置搜索并分析所有實時和歷史數據。 使用 Splunk?處理計算機數據,可讓您在幾分鐘內(而不是幾個小時或幾天)解決問題和調查安全事件。監視您的端對端基礎結構,避免服務性能降低或中斷。以較低成本滿足合規性要求。關聯并分析跨越多個系統的復雜事件。獲取新層次的運營可見性以及 IT 和業務智能。

根據最新的數據庫引擎排名顯示,Elastic,Solr和Splunk分別占據了數據庫搜索引擎的前三位。

splunk  VS elasticsearch

從趨勢上來看,Elastic和Splunk上升明顯,Elastic更是表現出了非常強勁的勢頭。

splunk  VS elasticsearch

基本概念

Elastic

  • 準實時(NRT)
    Elasticsearch是一個準實時性的搜索平臺,從數據索引到數據可以被搜索存在一定的時延。

  • 索引(Index)
    索引是有共同特性的文檔的集合,索引有自己的名字,可以對索引執行搜索,更新,刪除等操作。

  • 類型(Type)
    每個索引可以包含一個或者多個類型,類型可以看作一個索引數據的邏輯分組,通常我們會把擁有相同字段的文檔定義為同一個類型。

  • 文檔(Document)
    文檔是索引信息的基本單元。Elastic中文檔表現為JSON對象,文檔物理存貯在索引中,并需要被制定一個類型。因為表現為JSON, 很自然的,文檔是由一個個的字段(Feilds)組成,每個字段是一個名值對(Name Value Pair)

  • 評分(score)
    Elastic是基于Lucene構建的,所以搜索的結果會有一個打分。來評價搜索結果和查詢的相關性。

下圖是一個Elastic的搜索在Kibana中看到的例子,原始的數據是一個簡單的日志文件:

splunk  VS elasticsearch

我們通過logstash索引到Elasticsearch后,就可以搜索了。

splunk  VS elasticsearch

Splunk

  • 實時性
    Splunk同樣是準實時的,Splunk的實時搜索(Realtime Search)可以提供不間斷的搜索結果的數據流。

  • 事件(Event)
    對應于Elastic的文檔,Splunk的數據索引的基本單元是事件,每一個事件包含了一組值,字段,時間戳。Splunk的事件可以是一段文本,一個配置文件,一段日志或者JSON對象。

  • 字段(Fields)
    字段是可以被搜索的名值對,不同的事件可能擁有不同的字段。Splunk支持索引時(index time)和搜索時(search time)的字段抽取(fields extraction)

  • 索引(Indexes)
    類似Elastic的索引,所有的事件物理存儲在索引上,可以把索引理解為一個數據庫的表。

  • 知識對象(Knowledge Object)
    Splunk的知識對象提供對數據進一步的解釋,分類,增強等功能,包括:字段(fields),字段抽取(fields extraction),事件類型(event type),事務(transaction),查找(lookups),標簽(tags),別名(aliases),數據模型(data model)等等。

下圖是一個Splunk的搜索在Splunk客戶端看到的和前一個例子同樣的日志數據的搜索結果。

splunk  VS elasticsearch

從基本概念上來看,Elasticsearch和Splunk基本一致。從例子中我們可以看到很多的共性,事件/文檔,時間戳,字段,搜索,時間軸圖等等。其中有幾個主要的差別:

  • Elastic不支持搜索時的字段抽取,也就是說Elastic的文檔中的所有字段在索引時已經固定了,而Splunk支持在搜索時,動態的抽取新的字段

  • Elastic的搜索是基于評分機制的,搜索的結果有一個打分,而Splunk沒有對搜索結果評分

  • Splunk的知識對象可以提供對數據更高級,更靈活的管理能力。

用戶接口

ElasticSearch提供REST API來進行

  • 集群的管理,監控,健康檢查

  • 索引的管理(CURD)

  • 搜索的執行,包括排序,分頁,過濾,腳本,聚合等等高級的搜索功能。

Elasticsearch 本身并沒有提供任何UI的功能,搜索可以用Kibana,但是沒有管理UI還是讓人不爽的,好在開源的好處就是會有很多的開發者來構建缺失的功能:

  • ElasticHQ

  • cerebro?(推薦,界面干凈,我喜歡)

  • dejavu

另一選擇就是安裝X-Pack,這個是要收費的。

Splunk作為企業軟件,管理及訪問接口比較豐富,除了REST API 和命令行接口,Splunk的UI非常友好易用,基本上所有的功能都能通過集成的UI來使用。同時提供以下接口

  • REST API

  • Splunk UI

  • CLI

功能

數據接入和獲取

Elastic棧使用Logstash和Beats來進行數據的消化和獲取。

Logstash用jruby實現,有點像一個數據管道,把輸入的數據進行處理,變形,過濾,然后輸出到其它地方。Logstash 設計了自己的 DSL,包括有區域,注釋,數據類型(布爾值,字符串,數值,數組,哈希),條件判斷,字段引用等。

Logstash的數據管道包含三個步驟,Input,Filter和Output,每一步都可以通過plugin來擴展。另外Input和Output還支持配置Codecs,完成對輸入輸出數據的編解碼工作。

splunk  VS elasticsearch

Logstash支持的常見的Input包含File,syslog,beats等。Filter中主要完成數據的變形處理,可以增刪改字段,加標簽,等等。作為一個開源軟件,Output不僅僅支持ElasticSearch,還可以和許多其它軟件集成和目標,Output可以是文件,graphite,數據庫,Nagios,S3,Hadoop等。

splunk  VS elasticsearch

在實際運用中,logstash 進程會被分為兩個不同的角色。運行在應用服務器上的,盡量減輕運行壓力,只做讀取和轉發,這個角色叫做 shipper;運行在獨立服務器上,完成數據解析處理,負責寫入 Elasticsearch 的角色,叫 indexer。

logstash 作為無狀態的軟件,配合消息隊列系統,可以很輕松的做到線性擴展

Beats是 Elastic?從 packetbeat 發展出來的數據收集器系統。beat 收集器可以直接寫入 Elasticsearch,也可以傳輸給 Logstash。其中抽象出來的 libbeat,提供了統一的數據發送方法,輸入配置解析,日志記錄框架等功能。

splunk  VS elasticsearch

開源社區已經貢獻了許多的beats種類。

因為Beats是使用Golang編寫的,效率上很不錯。

Splunk使用Farwarder和Add-ons來進行數據的消化和獲取。

Splunk內置了對文件,syslog,網絡端口等input的處理。當配置某個節點為Forwarder的時候,Splunk Forwarder可以作為一個數據通道把數據發送到配置好的indexer去。這時候,它就類似logstash。這里一個主要的區別就是對數據字段的抽取,Elastic必須在logstash中通過filter配置或者擴展來做,也就是我們所說的Index time抽取,抽取后不能改變。Splunk支持Index time的抽取,但是更多時候,Splunk 在index time并不抽取而是等到搜索是在決定如何抽取字段。

對于特定領域的數據獲取,Splunk是用Add-on的形式。Splunk 的App市場上有超過600個不同種類的Add-on。

splunk  VS elasticsearch

用戶可以通過特定的Add-on或者自己開發Add-on來獲取特定的數據。

對于大數據的數據采集,大家也可以參考我的另一篇博客。

數據管理和存儲

ElasticSearch的數據存貯模型來自于Lucene,基本原理是實用了倒排表。大家可以參考這篇文章。

Splunk的核心同樣是倒排表,推薦大家看這篇去年Splunk Conf上的介紹,Behind the Magnifying Glass: How Search Works

splunk  VS elasticsearch

Splunk的Event存在許多Buckets中,多個Buckets構成邏輯分組的索引分布在Indexer上。

splunk  VS elasticsearch

每個Bucket中都是倒排表的結構存儲數據,原始數據通過gzip壓縮。

splunk  VS elasticsearch

搜索時,利用Bloom filter定位數據所在的bucket。

在對數據的存儲管理上,Elastic 和Splunk都是利用了倒排表。Splunk對數據進行壓縮,所以存儲空間的占用要少很多,尤其考慮到大部分數據是文本,壓縮比很高的,當然這會損失一部分性能用于數據的解壓。

數據分析和處理

對數據的處理分析,ElasticSearch主要使用?Search API來實現。而Splunk則提供了非常強大的SPL,相比起ES的Search API,Splunk的SPL要好用很多,可以說SPL就是非結構化數據的SQL。無論是利用SPL來開發分析應用,還是直接在Splunk UI上用SPL來處理數據,SPL都非常易用。開源社區也在試圖為Elastic增加類似SPL的DSL來改善數據處理的易用性。例如:

  • https://github.com/chenryn/ESPL

從這篇反饋可以看出,ES的search還有許多的不足。

splunk  VS elasticsearch

作為對此的響應,Elastic推出了painless script,該功能還處于實驗階段。

數據展現和可視化

Kibana是一個針對Elasticsearch的開源分析及可視化平臺,用來搜索、查看交互存儲在Elasticsearch索引中的數據。使用Kibana,可以通過各種圖表進行高級數據分析及展示。

splunk  VS elasticsearch

Splunk集成了非常方便的數據可視化和儀表盤功能,對于SPL的結果,可以非常方便的通過UI的簡單設置進行可視化的分析,導出到儀表盤。

splunk  VS elasticsearch

下圖的比較來自https://www.itcentralstation.com/products/comparisons/kibana_vs_splunk

splunk  VS elasticsearch

在數據可視化的領域的排名,Splunk僅僅落后于Tableau而已

splunk  VS elasticsearch

擴展性

從擴展性的角度來看,兩個平臺都擁有非常好的擴展性。

Elastic棧作為一個開源棧,很容易通過Plugin的方式擴展。包括:

  • ElasticSearch Plugin?

  • Kibana Plugin

  • Logstash Plugin

  • Beats Platform

Splunk提供一系列的擴展點支持應用和Add-on的開發, 在http://dev.splunk.com/可以找到更多的信息和文檔。包括:

  • Web Framework

  • SDK

  • Modular Input

  • … …

比起Elastic的Plugin,Splunk的擴展概念上比較復雜,開發一個App或者Add-on的門檻都要相對高一些。做為一個數據平臺,Splunk應該在擴展性上有所改進,使得擴展變的更為容易和簡單。

架構

Elastic Stack

splunk  VS elasticsearch

如上圖所示,ELK是一套棧,Logstash提供數據的消化和獲取,Elasticsearch對數據進行存儲,索引和搜索,而Kibana提供數據可視化和報表的功能。

Splunk

splunk  VS elasticsearch

Splunk的架構主要有三個角色:

  • Indexer
    Indexer提供數據的存儲,索引,類似Elasticsearch的作用

  • Search Head
    Search Head負責搜素,客戶接入,從功能上看,一部分是Kibana,因為Splunk的UI是運行在Search Head上的,提供所有的客戶端和可視化的功能,還有一部分,是提供分布式的搜索功能,包含對搜索的分發到Indexer和搜索結果的合并,這一部分功能對應在Elasticsearch上。

  • Forwarder
    Splunk的Forwarder負責數據接入,類似Logstash

除了以上的三個主要的角色,Splunk的架構中還有:Deployment Server,License Server,Master Cluster Node,Deployer等。

Splunk和ELK的基本架構非常類似,但是ELK的架構更為簡單和清楚,Logstash負責數據接入,Kibana負責數據展現,所有的復雜性在Elasticsearch中。Splunk的架構更為復雜一些,角色的類型也更多一些。

如果裝單機版本,Splunk更容易,因為所有的功能一次性就裝好了,而ELK則必須分別安裝E/L/K,從這一點上來看,Splunk有一定的優勢。

分布集群和擴展性

ElasticSearch

splunk  VS elasticsearch

ElasticSearch是為分布式設計的,有很好的擴展性,在一個典型的分布式配置中,每一個節點(node)可以配制成不同的角色,如上圖所示:

  • Client Node,負責API和數據的訪問的節點,不存儲/處理數據

  • Data Node,負責數據的存儲和索引

  • Master Node, 管理節點,負責Cluster中的節點的協調,不存儲數據。

每一種角色可以通過ElasticSearch的配置文件或者環境變量來配置。每一種角色都可以很方便的Scale,因為Elastic采用了對等性的設計,也就是所有的角色是平等的,(Master Node會進行Leader Election,其中有一個是領導者)這樣的設計使得在集群環境的伸縮性非常好,尤其是在容器環境,例如Docker Swarm或者Kubernetes中使用。

參考:

  • https://elk-docker.readthedocs.io/#elasticsearch-cluster

  • https://github.com/pires/kubernetes-elasticsearch-cluster

Splunk

Splunk作為企業級的分布式機器數據的平臺,擁有強大的分布式配置,包括跨數據中心的集群配置。Splunk提供兩種集群,Indexer集群和Search Head集群。

Splunk?Indexer集群

splunk  VS elasticsearch

如上圖所示,Splunk的indexer集群主要由三種角色:

  • Master Node,Master Node負責管理和協調整個的集群,類似ES的Master。但是只有一個節點,不支持多Master(最新版本6.6)。Master Node負責

    • 協調Peer Node之間的數據復制

    • 告訴Search Head數據在哪里

    • Peer Node的配置管理

    • Peer Node故障時的故障恢復

  • Peer Nodes,負責數據索引,類似ES的Data Node,Peer Node負責

    • 存儲索引數據

    • 發送/接收復制數據到其他Peer節點

    • 響應搜索請求

  • Search Head,負責數據的搜索和客戶端API訪問,類似ES的Client Node,但不完全相同。Search Head負責發送搜索請求到Peer Nodes,并對搜索的結果進行合并。

有人會問,那Master是不是集群中的單點故障?What if Master node goes down?Splunk的回答是否。即使Master 節點出現故障,Peer Nodes仍然可以正常工作,除非,同時有Peer Node出現故障。

  • http://docs.splunk.com/Documentation/Splunk/6.6.1/Indexer/Whathappenswhenamasternodegoesdown

  • https://answers.splunk.com/answers/129446/why-does-master-node-continue-to-be-single-point-of-failure-in-clustering.html

Splunk?Search Header 集群

splunk  VS elasticsearch

Search Head集群是由一組Search Head組成,它們共享配置,搜索任務等狀態。該Cluster主要有以下角色:

  • Deployer, 負責分發狀態和應用到peers

  • Cluster Member,其中有一個是Captain,負責協調。Cluster Memeber之間會互相通信,來保證狀態一致。Load Balancer是個可選項,可以負責Search的接入。

  • Search Peers,負責數據索引的?Indexer Nodes

另外Splunk還曾經提供過一個功能叫做Search Head Pooling,不過現在已經Depecated了。

Indexer集群可以和Search Head集群一起配置,構成一個分布式的Splunk配置。

相比較ES的相對比較簡單的集群配置,Splunk的集群配置比較復雜,ES中所有每一個節點可以靈活的配置角色,并且可以相對比較容易的擴展,利用例如Kubernetes的Pod的復制可以很容易的擴展每一個角色。擴展Splunk相對比較困難,要做到動態的伸縮,需要比較復雜的配置。大家可以參考這里,在容器環境里配置一個Splunk的集群需要比較多的布置,例如在這個Master的配置中,用戶需要考慮:

  • 如何配置License

  • 修改缺省的用戶名口令

  • 為每一個Search Head配置Search Head Cluster

  • 等待Splunk進程成功啟動

  • 配置業務發現

  • 安裝應用

  • … …

并且集群的擴展很難直接利用容器編排平臺提供的擴展接口,這一點Splunk還有很多提高的空間。

產品線

Elastic

splunk  VS elasticsearch

Elastic的產品線除了大家熟悉的ELK(ElasticSearch,Logstash,Kikana),主要包含

  • Beats?Beats是一個開源組件,提供一個代理,把本地抓到的數據傳送到ElasticSearch

  • Elastic Cloud, Elasti提供的云服務

  • X-Pack, Elastic的擴展組件,提供安全,告警,監控,機器學習和圖處理能力。主要功能需要付費使用。

Splunk

splunk  VS elasticsearch

Splunk的產品線包括

  • Splunk Enterprise

  • Splunk Cloud, Splunk運營的云服務,跑在AWS上

  • Splunk Light,Splunk Light版本,功能有所精簡,面向中小企業

  • Hunk, Splunk on Hadoop

  • Apps / Add-ons, ?Splunk提供大量的應用和數據獲取的擴展,可以參考?http://apps.splunk.com/

  • Splunk ITSI (IT Service Intelligence), Splunk為IT運維專門開發的產品

  • Splunk ES (Enterprise Security), Splunk為企業安全開發的產品,這個是Splunk 公司的拳頭產品,連續被Gartner評為SIEM領域的領導者,挑戰了該行業的傳統巨鱷IBM,HP

  • Splunk UBA (User Behavior Analytic), UBA是Splunk在15年收購的Caspidia帶來的基于機器學習的安全產品。

從產品線的角度來看,Splunk除了提供基本平臺,在IT運維和安全領域都有自己的拳頭產品。Elastic缺乏某個領域的應用。

價格

價格是大家非常關心的一個因素

Elastic的基本組件都是開源的,參看下表,X-pack中的一些高級功能需要付費使用。包含安全,多集群,報表,監控等等。

splunk  VS elasticsearch

云服務的價格參考下圖,ES的云是按照所使用的資源來收費,從這里選取的區域可以看出,ES的云也是運行在AWS上的。下圖中的配置每月需要花費200美元左右。(不同區域的收費不同)

splunk  VS elasticsearch

同時,除了Elastic自己,還有許多其他公司也提供Elastic Search的云服務,例如Bonsai,Qbox.io等。

splunk  VS elasticsearch

Splunk

Splunk Enterprise是按照數據每日的流量按年或者無限制事件付費,每天1GB的話,每年是2700美元,每個月也是差不多200塊。如果每天的數據量少于500M,可以使用Splunk提供的免費License,只是不能用安全,分布式等高級功能,500M可以做很多事情了。

splunk  VS elasticsearch

云服務的價格就要便宜多了,每天5GB,每年只要2430元,每個月不到200塊。當然因為計費的方式不同,和Elastic的云就不好比較了。另外因為是在AWS上,中國的用戶,呵呵了。

splunk  VS elasticsearch

總結

大數據的搜索平臺已經成為了眾多企業的標配,Elastic棧和Splunk是其中最為優秀和流行的選擇。兩者都有各自的優點和值得改進的地方。希望本文能夠在你的大數據平臺的選型上,有所幫助。也希望大家來和我交流,共同成長。

參考文檔

ELK

  • ElasticSearch 參考文檔https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

  • Github上收集的ElasticSearch相關開源軟件列表?https://github.com/dzharii/awesome-elasticsearch

  • 知乎ElaticSearch專題?https://www.zhihu.com/topic/19899427/hot

  • 中文書?https://github.com/chenryn/ELKstack-guide-cn

  • 中文書?https://www.gitbook.com/book/wizardforcel/mastering-elasticsearch/details

Splunk

  • Splunk 文檔?https://docs.splunk.com/Documentation

  • Splunk電子書?https://www.splunk.com/web_assets/v5/book/Exploring_Splunk.pdf

  • Splunk 開發文檔?http://dev.splunk.com/getstarted

  • Splunk 應用市場?http://apps.splunk.com/

  • Splunk 快速參考?https://www.splunk.com/content/dam/splunk2/pdfs/solution-guides/splunk-quick-reference-guide.pdf

其它

  • https://www.upguard.com/articles/splunk-vs-elk

  • https://db-engines.com/en/system/Elasticsearch%3BSplunk

  • https://www.searchtechnologies.com/blog/log-analytics-tools-open-source-vs-commercial

  • http://www.learnsplunk.com/splunk-vs-elk-stack.html


向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

武清区| 海南省| 太康县| 乌拉特后旗| 克东县| 海门市| 金塔县| 郧西县| 葵青区| 太康县| 东乌| 汪清县| 四会市| 日喀则市| 宿迁市| 来凤县| 德保县| 濮阳市| 什邡市| 大关县| 铜梁县| 龙陵县| 纳雍县| 曲松县| 普格县| 嘉兴市| 武山县| 玉门市| 鄢陵县| 云林县| 莱州市| 历史| 卢湾区| 荃湾区| 海丰县| 湟源县| 福安市| 清河县| 隆昌县| 临潭县| 文昌市|