亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Kubernetes HPA Controller怎么使用

發布時間:2021-12-20 10:13:02 來源:億速云 閱讀:140 作者:iii 欄目:云計算

這篇文章主要講解了“Kubernetes HPA Controller怎么使用”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“Kubernetes HPA Controller怎么使用”吧!

源碼目錄結構分析

HorizontalPodAutoscaler(以下簡稱HPA)的主要代碼如下,主要涉及的文件不多。

cmd/kube-controller-manager/app/autoscaling.go    // HPA Controller的啟動代碼


/pkg/controller/podautoscaler
.
├── BUILD
├── OWNERS
├── doc.go
├── horizontal.go    // podautoscaler的核心代碼,包括其創建和運行的代碼
├── horizontal_test.go
├── metrics
│   ├── BUILD
│   ├── metrics_client.go
│   ├── metrics_client_test.go
│   ├── metrics_client_test.go.orig
│   ├── metrics_client_test.go.rej
│   └── utilization.go
├── replica_calculator.go   // ReplicaCaculator的創建,以及根據cpu/metrics計算replicas的方法
└── replica_calculator_test.go

其中,horizontal.go和replica_calculator.go是最核心的文件,他們對應的Structure如下:

  • horizontal.go

Kubernetes HPA Controller怎么使用

  • replica_calculator.go

Kubernetes HPA Controller怎么使用

源碼分析

HPA Controller同其他Controller一樣,都是在kube-controller-manager啟動時完成初始化并啟動的,如下代碼所示。

cmd/kube-controller-manager/app/controllermanager.go:224

func newControllerInitializers() map[string]InitFunc {
	controllers := map[string]InitFunc{}
	
	...
	
	controllers["horizontalpodautoscaling"] = startHPAController
	
	...

	return controllers
}

kube-controller-manager啟動時會initial一堆的controllers,對于HPA controller,它的啟動就交給startHPAController了。

cmd/kube-controller-manager/app/autoscaling.go:29

func startHPAController(ctx ControllerContext) (bool, error) {
	
	...
	
	// HPA Controller需要集群已經部署Heapster,由Heapster提供監控數據,來進行replicas的計算。
	metricsClient := metrics.NewHeapsterMetricsClient(
		hpaClient,
		metrics.DefaultHeapsterNamespace,
		metrics.DefaultHeapsterScheme,
		metrics.DefaultHeapsterService,
		metrics.DefaultHeapsterPort,
	)
	
	// 創建ReplicaCaculator,后面會用它來計算desired replicas。
	replicaCalc := podautoscaler.NewReplicaCalculator(metricsClient, hpaClient.Core())
	
	// 創建HPA Controller,并啟動goroutine執行其Run方法,開始工作。
	go podautoscaler.NewHorizontalController(
		hpaClient.Core(),
		hpaClient.Extensions(),
		hpaClient.Autoscaling(),
		replicaCalc,
		ctx.Options.HorizontalPodAutoscalerSyncPeriod.Duration,
	).Run(ctx.Stop)
	
	return true, nil
}

首先我們來看看NewHorizontalController創建HPA Controller的代碼。

pkg/controller/podautoscaler/horizontal.go:112

func NewHorizontalController(evtNamespacer v1core.EventsGetter, scaleNamespacer unversionedextensions.ScalesGetter, hpaNamespacer unversionedautoscaling.HorizontalPodAutoscalersGetter, replicaCalc *ReplicaCalculator, resyncPeriod time.Duration) *HorizontalController {
	
	...

	// 構建HPA Controller
	controller := &HorizontalController{
		replicaCalc:     replicaCalc,
		eventRecorder:   recorder,
		scaleNamespacer: scaleNamespacer,
		hpaNamespacer:   hpaNamespacer,
	}
	
	// 創建Informer,配置對應的ListWatch Func,及其對應的EventHandler,用來監控HPA Resource的Add和Update事件。newInformer是HPA的核心代碼入口。
	store, frameworkController := newInformer(controller, resyncPeriod)
	controller.store = store
	controller.controller = frameworkController

	return controller
}

我們有必要來看看HPA Controller struct的定義:

pkg/controller/podautoscaler/horizontal.go:59

type HorizontalController struct {
	scaleNamespacer unversionedextensions.ScalesGetter
	hpaNamespacer   unversionedautoscaling.HorizontalPodAutoscalersGetter

	replicaCalc   *ReplicaCalculator
	eventRecorder record.EventRecorder

	// A store of HPA objects, populated by the controller.
	store cache.Store
	// Watches changes to all HPA objects.
	controller *cache.Controller
}
  • scaleNamespacer其實是一個ScaleInterface,包括Scale subresource的Get和Update接口。

  • hpaNamespacer是HorizontalPodAutoscalerInterface,包括HorizontalPodAutoscaler的Create, Update, UpdateStatus, Delete, Get, List, Watch等接口。

  • replicaCalc根據Heapster提供的監控數據,計算對應desired replicas。

    	pkg/controller/podautoscaler/replica_calculator.go:31
    
    	type ReplicaCalculator struct {
    		metricsClient metricsclient.MetricsClient
    		podsGetter    v1core.PodsGetter
    	}


  • store和controller:controller用來watch HPA objects,并更新到store這個cache中。

上面提到了Scale subresource,那是個什么東西?好吧,我們得看看Scale的定義。

pkg/apis/extensions/v1beta1/types.go:56

// represents a scaling request for a resource.
type Scale struct {
	metav1.TypeMeta `json:",inline"`
	// Standard object metadata; More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#metadata.
	// +optional
	v1.ObjectMeta `json:"metadata,omitempty" protobuf:"bytes,1,opt,name=metadata"`

	// defines the behavior of the scale. More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#spec-and-status.
	// +optional
	Spec ScaleSpec `json:"spec,omitempty" protobuf:"bytes,2,opt,name=spec"`

	// current status of the scale. More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#spec-and-status. Read-only.
	// +optional
	Status ScaleStatus `json:"status,omitempty" protobuf:"bytes,3,opt,name=status"`
}

// describes the attributes of a scale subresource
type ScaleSpec struct {
	// desired number of instances for the scaled object.
	Replicas int `json:"replicas,omitempty"`
}

// represents the current status of a scale subresource.
type ScaleStatus struct {
	// actual number of observed instances of the scaled object.
	Replicas int `json:"replicas"`

	// label query over pods that should match the replicas count.
	Selector map[string]string `json:"selector,omitempty"`
}
  • Scale struct作為一次scale動作的請求數據。

  • 其中Spec定義的是desired replicas number。

  • ScaleStatus定義了current replicas number。

看完了HorizontalController的結構后,接著看看NewHorizontalController中調用的newInformer。在上面的注釋中,我提到newInformer是整個HPA的核心代碼入口。

pkg/controller/podautoscaler/horizontal.go:75

func newInformer(controller *HorizontalController, resyncPeriod time.Duration) (cache.Store, *cache.Controller) {
	return cache.NewInformer(
	
		// 配置ListFucn和WatchFunc,用來定期List和watch HPA resource。
		&cache.ListWatch{
			ListFunc: func(options v1.ListOptions) (runtime.Object, error) {
				return controller.hpaNamespacer.HorizontalPodAutoscalers(v1.NamespaceAll).List(options)
			},
			WatchFunc: func(options v1.ListOptions) (watch.Interface, error) {
				return controller.hpaNamespacer.HorizontalPodAutoscalers(v1.NamespaceAll).Watch(options)
			},
		},
		
		// 定義期望收到的object為HorizontalPodAutoscaler
		&autoscaling.HorizontalPodAutoscaler{},
		
		// 定義定期List的周期
		resyncPeriod,
		
		// 配置HPA resource event的Handler(AddFunc, UpdateFunc)
		cache.ResourceEventHandlerFuncs{
			AddFunc: func(obj interface{}) {
				hpa := obj.(*autoscaling.HorizontalPodAutoscaler)
				hasCPUPolicy := hpa.Spec.TargetCPUUtilizationPercentage != nil
				_, hasCustomMetricsPolicy := hpa.Annotations[HpaCustomMetricsTargetAnnotationName]
				if !hasCPUPolicy && !hasCustomMetricsPolicy {
					controller.eventRecorder.Event(hpa, v1.EventTypeNormal, "DefaultPolicy", "No scaling policy specified - will use default one. See documentation for details")
				}
				
				// 根據監控調整hpa的數據
				err := controller.reconcileAutoscaler(hpa)
				if err != nil {
					glog.Warningf("Failed to reconcile %s: %v", hpa.Name, err)
				}
			},
			UpdateFunc: func(old, cur interface{}) {
				hpa := cur.(*autoscaling.HorizontalPodAutoscaler)
				
				// 根據監控調整hpa的數據
				err := controller.reconcileAutoscaler(hpa)
				if err != nil {
					glog.Warningf("Failed to reconcile %s: %v", hpa.Name, err)
				}
			},
			// We are not interested in deletions.
		},
	)
}

newInformer的代碼也不長嘛,簡單說來,就是配置了HPA resource的ListWatch的Func,注冊HPA resource 的Add和Update Event的handler Func。

最終通過調用reconcileAutoscaler來矯正hpa的數據。

上面代碼中,將HPA resource的ListWatch Func注冊為HorizontalPodAutoscaler Interface定義的List和Watch接口。

等等,說了這么多,怎么還沒看到HorizontalPodAutoscaler struct的定義呢!好吧,下面就來看看,正好HorizontalPodAutoscaler Interface中出現了。

pkg/apis/autoscaling/v1/types.go:76

// configuration of a horizontal pod autoscaler.
type HorizontalPodAutoscaler struct {
	metav1.TypeMeta `json:",inline"`
	// Standard object metadata. More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#metadata
	// +optional
	v1.ObjectMeta `json:"metadata,omitempty" protobuf:"bytes,1,opt,name=metadata"`

	// behaviour of autoscaler. More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#spec-and-status.
	// +optional
	Spec HorizontalPodAutoscalerSpec `json:"spec,omitempty" protobuf:"bytes,2,opt,name=spec"`

	// current information about the autoscaler.
	// +optional
	Status HorizontalPodAutoscalerStatus `json:"status,omitempty" protobuf:"bytes,3,opt,name=status"`
}
  • Spec HorizontalPodAutoscalerSpec存的是hpa的描述信息,是可以通過kube-controller-manager配置對應flag的信息。包括最小副本數MinReplicas,最大副本數MaxReplicas,hpa對應的所有pods的平均的百分比形式的目標CPU利用率TargetCPUUtilizationPercentage。

    	pkg/apis/autoscaling/v1/types.go:36
    
    	// specification of a horizontal pod autoscaler.
    	type HorizontalPodAutoscalerSpec struct {
    		// reference to scaled resource; horizontal pod autoscaler will learn the current resource consumption
    		// and will set the desired number of pods by using its Scale subresource.
    		ScaleTargetRef CrossVersionObjectReference `json:"scaleTargetRef" protobuf:"bytes,1,opt,name=scaleTargetRef"`
    		// lower limit for the number of pods that can be set by the autoscaler, default 1.
    		// +optional
    		MinReplicas *int32 `json:"minReplicas,omitempty" protobuf:"varint,2,opt,name=minReplicas"`
    		// upper limit for the number of pods that can be set by the autoscaler; cannot be smaller than MinReplicas.
    		MaxReplicas int32 `json:"maxReplicas" protobuf:"varint,3,opt,name=maxReplicas"`
    		// target average CPU utilization (represented as a percentage of requested CPU) over all the pods;
    		// if not specified the default autoscaling policy will be used.
    		// +optional
    		TargetCPUUtilizationPercentage *int32 `json:"targetCPUUtilizationPercentage,omitempty" protobuf:"varint,4,opt,name=targetCPUUtilizationPercentage"`
    	}


  • Status HorizontalPodAutoscalerStatu存的是HPA的當前狀態數據,包括前后兩次scale的時間間隔ObservedGeneration,上一次scale的時間戳LastScaleTime,當前副本數CurrentReplicas,期望副本數DesiredReplicas,hpa對應的所有pods的平均的百分比形式的當前CPU利用率。

    	pkg/apis/autoscaling/v1/types.go:52
    
    	// current status of a horizontal pod autoscaler
    	type HorizontalPodAutoscalerStatus struct {
    		// most recent generation observed by this autoscaler.
    		// +optional
    		ObservedGeneration *int64 `json:"observedGeneration,omitempty" protobuf:"varint,1,opt,name=observedGeneration"`
    
    		// last time the HorizontalPodAutoscaler scaled the number of pods;
    		// used by the autoscaler to control how often the number of pods is changed.
    		// +optional
    		LastScaleTime *metav1.Time `json:"lastScaleTime,omitempty" protobuf:"bytes,2,opt,name=lastScaleTime"`
    
    		// current number of replicas of pods managed by this autoscaler.
    		CurrentReplicas int32 `json:"currentReplicas" protobuf:"varint,3,opt,name=currentReplicas"`
    
    		// desired number of replicas of pods managed by this autoscaler.
    		DesiredReplicas int32 `json:"desiredReplicas" protobuf:"varint,4,opt,name=desiredReplicas"`
    
    		// current average CPU utilization over all pods, represented as a percentage of requested CPU,
    		// e.g. 70 means that an average pod is using now 70% of its requested CPU.
    		// +optional
    		CurrentCPUUtilizationPercentage *int32 `json:"currentCPUUtilizationPercentage,omitempty" protobuf:"varint,5,opt,name=currentCPUUtilizationPercentage"`
    	}


newInformer的代碼可見,不管hpa resource的event為Add或者update,最終都是調用reconcileAutoscaler來觸發HorizontalPodAutoscaler數據的更新。

pkg/controller/podautoscaler/horizontal.go:272

func (a *HorizontalController) reconcileAutoscaler(hpa *autoscaling.HorizontalPodAutoscaler) error {
	...

	// 獲取對應resource的scale subresource數據。
	scale, err := a.scaleNamespacer.Scales(hpa.Namespace).Get(hpa.Spec.ScaleTargetRef.Kind, hpa.Spec.ScaleTargetRef.Name)
	
	...
	
	// 得到當前副本數
	currentReplicas := scale.Status.Replicas

	cpuDesiredReplicas := int32(0)
	cpuCurrentUtilization := new(int32)
	cpuTimestamp := time.Time{}

	cmDesiredReplicas := int32(0)
	cmMetric := ""
	cmStatus := ""
	cmTimestamp := time.Time{}

	desiredReplicas := int32(0)
	rescaleReason := ""
	timestamp := time.Now()

	rescale := true

	// 如果期望副本數為0,這不進行scale操作。
	if scale.Spec.Replicas == 0 {
		// Autoscaling is disabled for this resource
		desiredReplicas = 0
		rescale = false
	} 
	
	// 期望副本數不能超過hpa中配置的最大副本數
	else if currentReplicas > hpa.Spec.MaxReplicas {
		rescaleReason = "Current number of replicas above Spec.MaxReplicas"
		desiredReplicas = hpa.Spec.MaxReplicas
	} 
	
	// 期望副本數不能低于配置的最小副本數
	else if hpa.Spec.MinReplicas != nil && currentReplicas < *hpa.Spec.MinReplicas {
		rescaleReason = "Current number of replicas below Spec.MinReplicas"
		desiredReplicas = *hpa.Spec.MinReplicas
	} 
	
	// 期望副本數最少為1
	else if currentReplicas == 0 {
		rescaleReason = "Current number of replicas must be greater than 0"
		desiredReplicas = 1
	} 
	// 如果當前副本數在Min和Max之間,則需要根據cpu或者custom metrics(如果加了對應的Annotation)數據進行算法計算得到期望副本數。
	else {
		// All basic scenarios covered, the state should be sane, lets use metrics.
		cmAnnotation, cmAnnotationFound := hpa.Annotations[HpaCustomMetricsTargetAnnotationName]

		if hpa.Spec.TargetCPUUtilizationPercentage != nil || !cmAnnotationFound {
		
			// 根據cpu利用率計算期望副本數
			cpuDesiredReplicas, cpuCurrentUtilization, cpuTimestamp, err = a.computeReplicasForCPUUtilization(hpa, scale)
			if err != nil {
			
				// 更新hpa的當前副本數
				a.updateCurrentReplicasInStatus(hpa, currentReplicas)
				return fmt.Errorf("failed to compute desired number of replicas based on CPU utilization for %s: %v", reference, err)
			}
		}

		if cmAnnotationFound {
		
			// 根據custom metrics數據計算期望副本數
			cmDesiredReplicas, cmMetric, cmStatus, cmTimestamp, err = a.computeReplicasForCustomMetrics(hpa, scale, cmAnnotation)
			if err != nil {
			
				// 更新hpa的當前副本數
				a.updateCurrentReplicasInStatus(hpa, currentReplicas)
				return fmt.Errorf("failed to compute desired number of replicas based on Custom Metrics for %s: %v", reference, err)
			}
		}

		// 取cpu和custom metric得到的期望副本數的最大值作為最終的desired replicas,并且要在min和max范圍內。
		rescaleMetric := ""
		if cpuDesiredReplicas > desiredReplicas {
			desiredReplicas = cpuDesiredReplicas
			timestamp = cpuTimestamp
			rescaleMetric = "CPU utilization"
		}
		if cmDesiredReplicas > desiredReplicas {
			desiredReplicas = cmDesiredReplicas
			timestamp = cmTimestamp
			rescaleMetric = cmMetric
		}
		if desiredReplicas > currentReplicas {
			rescaleReason = fmt.Sprintf("%s above target", rescaleMetric)
		}
		if desiredReplicas < currentReplicas {
			rescaleReason = "All metrics below target"
		}

		if hpa.Spec.MinReplicas != nil && desiredReplicas < *hpa.Spec.MinReplicas {
			desiredReplicas = *hpa.Spec.MinReplicas
		}

		//  never scale down to 0, reserved for disabling autoscaling
		if desiredReplicas == 0 {
			desiredReplicas = 1
		}

		if desiredReplicas > hpa.Spec.MaxReplicas {
			desiredReplicas = hpa.Spec.MaxReplicas
		}

		// Do not upscale too much to prevent incorrect rapid increase of the number of master replicas caused by
		// bogus CPU usage report from heapster/kubelet (like in issue #32304).
		if desiredReplicas > calculateScaleUpLimit(currentReplicas) {
			desiredReplicas = calculateScaleUpLimit(currentReplicas)
		}

		// 根據currentReplicas和desiredReplicas的對比,以及scale時間是否滿足配置間隔要求,決定是否此時需要rescale
		rescale = shouldScale(hpa, currentReplicas, desiredReplicas, timestamp)
	}

	if rescale {
		scale.Spec.Replicas = desiredReplicas
		// 執行ScaleInterface的Update接口,觸發調用API Server的對應resource的scale subresource的數據更新。其實最終會去修改對應rc或者deployment的replicas,然后由rc或deployment Controller去最終擴容或者縮容,使得副本數達到新的期望值。
		_, err = a.scaleNamespacer.Scales(hpa.Namespace).Update(hpa.Spec.ScaleTargetRef.Kind, scale)
		if err != nil {
			a.eventRecorder.Eventf(hpa, v1.EventTypeWarning, "FailedRescale", "New size: %d; reason: %s; error: %v", desiredReplicas, rescaleReason, err.Error())
			return fmt.Errorf("failed to rescale %s: %v", reference, err)
		}
		a.eventRecorder.Eventf(hpa, v1.EventTypeNormal, "SuccessfulRescale", "New size: %d; reason: %s", desiredReplicas, rescaleReason)
		glog.Infof("Successfull rescale of %s, old size: %d, new size: %d, reason: %s",
			hpa.Name, currentReplicas, desiredReplicas, rescaleReason)
	} else {
		desiredReplicas = currentReplicas
	}

	// 更新hpa resource的status數據
	return a.updateStatus(hpa, currentReplicas, desiredReplicas, cpuCurrentUtilization, cmStatus, rescale)
}

上面reconcileAutoscaler的代碼很重要,把想說的都寫到對應的注釋了。其中computeReplicasForCPUUtilization computeReplicasForCustomMetrics 需要單獨提出來看看,因為這兩個方法是HPA算法的體現,實際上最終算法是在pkg/controller/podautoscaler/replica_calculator.go:45#GetResourceReplicaspkg/controller/podautoscaler/replica_calculator.go:153#GetMetricReplicas實現的:

  • pkg/controller/podautoscaler/replica_calculator.go:45#GetResourceReplicas負責根據heapster提供的cpu利用率數據計算得到desired replicas number。

  • pkg/controller/podautoscaler/replica_calculator.go:153#GetMetricReplicas負責根據heapster提供的custom raw metric數據計算得到desired replicas number。

具體關于HPA算法的源碼分析,我后續會單獨寫一篇博客,有興趣的可以關注(對于絕大部分同學來說沒必要關注,除非需要定制HPA算法時,才會具體去分析)。

總而言之,根據cpu和custom metric數據分別計算得到desired replicas后,取兩者最大的值,但不能超過配置的Max Replicas。

稍等稍等,計算出了desired replicas還還夠,我們還要通過shouldScale看看現在距離上一次彈性伸縮的時間間隔是否滿足條件:

  • 兩次縮容的間隔不得小于5min。

  • 兩次擴容的間隔不得小于3min。

shouldScale的代碼如下:

pkg/controller/podautoscaler/horizontal.go:387

...

var downscaleForbiddenWindow = 5 * time.Minute
var upscaleForbiddenWindow = 3 * time.Minute

...

func shouldScale(hpa *autoscaling.HorizontalPodAutoscaler, currentReplicas, desiredReplicas int32, timestamp time.Time) bool {
	if desiredReplicas == currentReplicas {
		return false
	}

	if hpa.Status.LastScaleTime == nil {
		return true
	}

	// Going down only if the usageRatio dropped significantly below the target
	// and there was no rescaling in the last downscaleForbiddenWindow.
	if desiredReplicas < currentReplicas && hpa.Status.LastScaleTime.Add(downscaleForbiddenWindow).Before(timestamp) {
		return true
	}

	// Going up only if the usage ratio increased significantly above the target
	// and there was no rescaling in the last upscaleForbiddenWindow.
	if desiredReplicas > currentReplicas && hpa.Status.LastScaleTime.Add(upscaleForbiddenWindow).Before(timestamp) {
		return true
	}
	return false
}

只有滿足這個條件后,接著才會調用Scales.Update接口與API Server交互,完成Scale對應的RC的replicas的設置。以rc Controller為例(deployment Controller的雷同),API Server對應的Scales.Update接口的實現邏輯如下:

pkg/registry/core/rest/storage_core.go:91
func (c LegacyRESTStorageProvider) NewLegacyRESTStorage(restOptionsGetter generic.RESTOptionsGetter) (LegacyRESTStorage, genericapiserver.APIGroupInfo, error) {
	...
	if autoscalingGroupVersion := (schema.GroupVersion{Group: "autoscaling", Version: "v1"}); registered.IsEnabledVersion(autoscalingGroupVersion) {
		apiGroupInfo.SubresourceGroupVersionKind["replicationcontrollers/scale"] = autoscalingGroupVersion.WithKind("Scale")
	}

	...
	restStorageMap := map[string]rest.Storage{
		...
		
		"replicationControllers":        controllerStorage.Controller,
		"replicationControllers/status": controllerStorage.Status,
		
		...
	}
	return restStorage, apiGroupInfo, nil
}



pkg/registry/core/controller/etcd/etcd.go:124

func (r *ScaleREST) Update(ctx api.Context, name string, objInfo rest.UpdatedObjectInfo) (runtime.Object, bool, error) {
	rc, err := r.registry.GetController(ctx, name, &metav1.GetOptions{})
	if err != nil {
		return nil, false, errors.NewNotFound(autoscaling.Resource("replicationcontrollers/scale"), name)
	}

	oldScale := scaleFromRC(rc)
	obj, err := objInfo.UpdatedObject(ctx, oldScale)
	if err != nil {
		return nil, false, err
	}

	if obj == nil {
		return nil, false, errors.NewBadRequest("nil update passed to Scale")
	}
	scale, ok := obj.(*autoscaling.Scale)
	if !ok {
		return nil, false, errors.NewBadRequest(fmt.Sprintf("wrong object passed to Scale update: %v", obj))
	}

	if errs := validation.ValidateScale(scale); len(errs) > 0 {
		return nil, false, errors.NewInvalid(autoscaling.Kind("Scale"), scale.Name, errs)
	}
	
	// 設置rc對應spec.replicas為Scale中的期望副本數
	rc.Spec.Replicas = scale.Spec.Replicas
	rc.ResourceVersion = scale.ResourceVersion
	
	// 更新到etcd
	rc, err = r.registry.UpdateController(ctx, rc)
	if err != nil {
		return nil, false, err
	}
	return scaleFromRC(rc), false, nil
}

了解kubernetes rc Controller的同學很清楚,修改rc的replicas后,會被rc Controller watch到,然后觸發rc Controller去執行創建或者銷毀對應差額數量的replicas,最終使得其副本數達到HPA計算得到的期望值。也就是說,最終由rc controller去執行具體的擴容或縮容動作。

最后,來看看HorizontalController的Run方法:

pkg/controller/podautoscaler/horizontal.go:130

func (a *HorizontalController) Run(stopCh <-chan struct{}) {
	defer utilruntime.HandleCrash()
	glog.Infof("Starting HPA Controller")
	go a.controller.Run(stopCh)
	<-stopCh
	glog.Infof("Shutting down HPA Controller")
}

很簡單,就是負責 HPA Resource的ListWatch,將change更新到對應的store(cache)。

HPA Resource的同步周期通過 --horizontal-pod-autoscaler-sync-period設置,默認值為30s。

感謝各位的閱讀,以上就是“Kubernetes HPA Controller怎么使用”的內容了,經過本文的學習后,相信大家對Kubernetes HPA Controller怎么使用這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

汉寿县| 兴城市| 台南市| 诏安县| 松阳县| 张家口市| 祁连县| 冕宁县| 遂溪县| 崇左市| 德惠市| 荔浦县| 高青县| 左贡县| 武川县| 商河县| 江安县| 子长县| 定州市| 连云港市| 麻栗坡县| 新宾| 大城县| 宿州市| 建德市| 昌乐县| 临夏县| 西贡区| 嵩明县| 榕江县| 平果县| 吉安县| 平定县| 海晏县| 平度市| 永济市| 南江县| 安徽省| 临潭县| 辽阳县| 保康县|