亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

怎樣使用sbt構建spark的項目

發布時間:2021-11-10 17:35:00 來源:億速云 閱讀:146 作者:柒染 欄目:云計算

本篇文章為大家展示了怎樣使用sbt構建spark的項目,內容簡明扼要并且容易理解,絕對能使你眼前一亮,通過這篇文章的詳細介紹希望你能有所收獲。

用Intellij 構建sbt項目  scala 使用2.10.4

name := "gstorm"

version := "1.0"



version := "1.0"

//Older Scala Version
scalaVersion := "2.10.4"

val overrideScalaVersion = "2.11.8"
val sparkVersion = "2.0.0"
val sparkXMLVersion = "0.3.3"
val sparkCsvVersion = "1.4.0"
val sparkElasticVersion = "2.3.4"
val sscKafkaVersion = "2.0.1"
val sparkMongoVersion = "1.0.0"
val sparkCassandraVersion = "1.6.0"

//Override Scala Version to the above 2.11.8 version
ivyScala := ivyScala.value map {
  _.copy(overrideScalaVersion = true)
}

resolvers ++= Seq(
  "All Spark Repository -> bintray-spark-packages" at "https://dl.bintray.com/spark-packages/maven/"
)

libraryDependencies ++= Seq(
  "org.apache.spark" %% "spark-core" % sparkVersion exclude("jline", "2.12"),
  "org.apache.spark" %% "spark-sql" % sparkVersion excludeAll(ExclusionRule(organization = "jline"), ExclusionRule("name", "2.12")),
  "org.apache.spark" %% "spark-hive" % sparkVersion,
  "org.apache.spark" %% "spark-yarn" % sparkVersion,
  "com.databricks" %% "spark-xml" % sparkXMLVersion,
  "com.databricks" %% "spark-csv" % sparkCsvVersion,
  "org.apache.spark" %% "spark-graphx" % sparkVersion,
  "org.apache.spark" %% "spark-catalyst" % sparkVersion,
  "org.apache.spark" %% "spark-streaming" % sparkVersion,
  //  "com.101tec"           % "zkclient"         % "0.9",
  "org.elasticsearch" %% "elasticsearch-spark" % sparkElasticVersion,
  //  "org.apache.spark" %% "spark-streaming-kafka-0-10_2.11" % sscKafkaVersion,
  "org.mongodb.spark" % "mongo-spark-connector_2.11" % sparkMongoVersion,
  "com.stratio.datasource" % "spark-mongodb_2.10" % "0.11.1",
  "dibbhatt" % "kafka-spark-consumer" % "1.0.8",
  "net.liftweb" %% "lift-webkit" % "2.6.2"
)

WordCount.scala

import org.apache.spark.sql.SparkSession

object WordCount {

  def main(args: Array[String]): Unit = {

    val spark = SparkSession
      .builder()
      .appName("Spark SQL Example")
      .master("local[2]")
      .config("spark.sql.codegen.WordCount", "true")
      .getOrCreate()

    val sc = spark.sparkContext
    val textFile = sc.textFile("hdfs://hadoop:9000/words.txt")
    val wordCounts = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)
    wordCounts.collect.foreach(println)
  }
}

上述內容就是怎樣使用sbt構建spark的項目,你們學到知識或技能了嗎?如果還想學到更多技能或者豐富自己的知識儲備,歡迎關注億速云行業資訊頻道。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

台安县| 奉贤区| 沿河| 中西区| 普格县| 永丰县| 永康市| 绥江县| 苏尼特左旗| 施甸县| 乾安县| 成都市| 阿勒泰市| 齐齐哈尔市| 拉孜县| 营口市| 临沭县| 中牟县| 光山县| 洛川县| 阳原县| 锡林郭勒盟| 阳山县| 河东区| 和田县| 资源县| 龙里县| 荆州市| 满洲里市| 大化| 云南省| 永定县| 镇远县| 南通市| 电白县| 营口市| 马山县| 北川| 郯城县| 监利县| 丘北县|