您好,登錄后才能下訂單哦!
本篇文章為大家展示了典型應用場景有哪些,內容簡明扼要并且容易理解,絕對能使你眼前一亮,通過這篇文章的詳細介紹希望你能有所收獲。
ZooKeeper典型應用場景一覽 |
數據發布與訂閱(配置中心) |
發布與訂閱模型,即所謂的配置中心,顧名思義就是發布者將數據發布到ZK節點上,供訂閱者動態獲取數據,實現配置信息的集中式管理和動態更新。例如全局的配置信息,服務式服務框架的服務地址列表等就非常適合使用。 |
注意:在上面提到的應用場景中,有個默認前提是:數據量很小,但是數據更新可能會比較快的場景。 |
負載均衡 |
這里說的負載均衡是指軟負載均衡。在分布式環境中,為了保證高可用性,通常同一個應用或同一個服務的提供方都會部署多份,達到對等服務。而消費者就須要在這些對等的服務器中選擇一個來執行相關的業務邏輯,其中比較典型的是消息中間件中的生產者,消費者負載均衡。 |
消息中間件中發布者和訂閱者的負載均衡,linkedin開源的KafkaMQ和阿里開源的metaq都是通過zookeeper來做到生產者、消費者的負載均衡。這里以metaq為例如講下: 生產者負載均衡:metaq發送消息的時候,生產者在發送消息的時候必須選擇一臺broker上的一個分區來發送消息,因此metaq在運行過程中,會把所有broker和對應的分區信息全部注冊到ZK指定節點上,默認的策略是一個依次輪詢的過程,生產者在通過ZK獲取分區列表之后,會按照brokerId和partition的順序排列組織成一個有序的分區列表,發送的時候按照從頭到尾循環往復的方式選擇一個分區來發送消息。
消費負載均衡: 在消費過程中,一個消費者會消費一個或多個分區中的消息,但是一個分區只會由一個消費者來消費。MetaQ的消費策略是:
在某個消費者故障或者重啟等情況下,其他消費者會感知到這一變化(通過 zookeeper watch消費者列表),然后重新進行負載均衡,保證所有的分區都有消費者進行消費。 |
命名服務(Naming Service) |
命名服務也是分布式系統中比較常見的一類場景。在分布式系統中,通過使用命名服務,客戶端應用能夠根據指定名字來獲取資源或服務的地址,提供者等信息。被命名的實體通常可以是集群中的機器,提供的服務地址,遠程對象等等——這些我們都可以統稱他們為名字(Name)。其中較為常見的就是一些分布式服務框架中的服務地址列表。通過調用ZK提供的創建節點的API,能夠很容易創建一個全局唯一的path,這個path就可以作為一個名稱。 |
阿里巴巴集團開源的分布式服務框架Dubbo中使用ZooKeeper來作為其命名服務,維護全局的服務地址列表,點擊這里查看Dubbo開源項目。在Dubbo實現中:
服務提供者在啟動的時候,向ZK上的指定節點/dubbo/${serviceName}/providers目錄下寫入自己的URL地址,這個操作就完成了服務的發布。 服務消費者啟動的時候,訂閱/dubbo/${serviceName}/providers目錄下的提供者URL地址, 并向/dubbo/${serviceName} /consumers目錄下寫入自己的URL地址。 注意,所有向ZK上注冊的地址都是臨時節點,這樣就能夠保證服務提供者和消費者能夠自動感應資源的變化。 另外,Dubbo還有針對服務粒度的監控,方法是訂閱/dubbo/${serviceName}目錄下所有提供者和消費者的信息。 |
分布式通知/協調 |
ZooKeeper中特有watcher注冊與異步通知機制,能夠很好的實現分布式環境下不同系統之間的通知與協調,實現對數據變更的實時處理。使用方法通常是不同系統都對ZK上同一個znode進行注冊,監聽znode的變化(包括znode本身內容及子節點的),其中一個系統update了znode,那么另一個系統能夠收到通知,并作出相應處理 |
總之,使用zookeeper來進行分布式通知和協調能夠大大降低系統之間的耦合 |
集群管理與Master選舉 |
利用ZooKeeper有兩個特性,就可以實時另一種集群機器存活性監控系統:
例如,監控系統在 /clusterServers 節點上注冊一個Watcher,以后每動態加機器,那么就往 /clusterServers 下創建一個 EPHEMERAL類型的節點:/clusterServers/{hostname}. 這樣,監控系統就能夠實時知道機器的增減情況,至于后續處理就是監控系統的業務了。
在分布式環境中,相同的業務應用分布在不同的機器上,有些業務邏輯(例如一些耗時的計算,網絡I/O處理),往往只需要讓整個集群中的某一臺機器進行執行,其余機器可以共享這個結果,這樣可以大大減少重復勞動,提高性能,于是這個master選舉便是這種場景下的碰到的主要問題。 利用ZooKeeper的強一致性,能夠保證在分布式高并發情況下節點創建的全局唯一性,即:同時有多個客戶端請求創建 /currentMaster 節點,最終一定只有一個客戶端請求能夠創建成功。利用這個特性,就能很輕易的在分布式環境中進行集群選取了。 另外,這種場景演化一下,就是動態Master選舉。這就要用到?EPHEMERAL_SEQUENTIAL類型節點的特性了。 上文中提到,所有客戶端創建請求,最終只有一個能夠創建成功。在這里稍微變化下,就是允許所有請求都能夠創建成功,但是得有個創建順序,于是所有的請求最終在ZK上創建結果的一種可能情況是這樣: /currentMaster/{sessionId}-1 ,?/currentMaster/{sessionId}-2 ,?/currentMaster/{sessionId}-3 ….. 每次選取序列號最小的那個機器作為Master,如果這個機器掛了,由于他創建的節點會馬上小時,那么之后最小的那個機器就是Master了。 |
|
分布式鎖 |
分布式鎖,這個主要得益于ZooKeeper為我們保證了數據的強一致性。鎖服務可以分為兩類,一個是保持獨占,另一個是控制時序。
|
分布式隊列 |
隊列方面,簡單地講有兩種,一種是常規的先進先出隊列,另一種是要等到隊列成員聚齊之后的才統一按序執行。對于第一種先進先出隊列,和分布式鎖服務中的控制時序場景基本原理一致,這里不再贅述。
第二種隊列其實是在FIFO隊列的基礎上作了一個增強。通常可以在 /queue 這個znode下預先建立一個/queue/num 節點,并且賦值為n(或者直接給/queue賦值n),表示隊列大小,之后每次有隊列成員加入后,就判斷下是否已經到達隊列大小,決定是否可以開始執行了。這種用法的典型場景是,分布式環境中,一個大任務Task A,需要在很多子任務完成(或條件就緒)情況下才能進行。這個時候,凡是其中一個子任務完成(就緒),那么就去 /taskList 下建立自己的臨時時序節點(CreateMode.EPHEMERAL_SEQUENTIAL),當 /taskList 發現自己下面的子節點滿足指定個數,就可以進行下一步按序進行處理了。 |
上述內容就是典型應用場景有哪些,你們學到知識或技能了嗎?如果還想學到更多技能或者豐富自己的知識儲備,歡迎關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。