您好,登錄后才能下訂單哦!
這篇文章主要介紹“MapReduce怎么實現氣象站計算最低或最高溫度”,在日常操作中,相信很多人在MapReduce怎么實現氣象站計算最低或最高溫度問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”MapReduce怎么實現氣象站計算最低或最高溫度”的疑惑有所幫助!接下來,請跟著小編一起來學習吧!
TemperatureMR.java
package cn.kissoft.hadoop.week05; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class TemperatureMR { public static void main(String[] args) throws Exception { if (args.length != 2) { System.err.println("Usage: Temperature <input path> <output path>"); System.exit(-1); } Job job = new Job(); job.setJarByClass(TemperatureMR.class); job.setJobName("Max and min temperature"); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setMapperClass(TemperatureMapper.class); job.setReducerClass(TemperatureReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
TemperatureMapper.java
package cn.kissoft.hadoop.week05; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class TemperatureMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private static final int MISSING = 9999; @Override public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String year = line.substring(0, 4); int airTemperature = Integer.parseInt(line.substring(13, 19).trim()); if (Math.abs(airTemperature) != MISSING) { context.write(new Text(year), new IntWritable(airTemperature)); } } }
MaxTemperatureReducer.java
package cn.kissoft.hadoop.week05; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class TemperatureReducer extends Reducer<Text, IntWritable, Text, IntWritable> { @Override public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int maxValue = Integer.MIN_VALUE; int minValue = Integer.MAX_VALUE; for (IntWritable value : values) { maxValue = Math.max(maxValue, value.get()); minValue = Math.min(minValue, value.get()); } context.write(key, new IntWritable(maxValue)); context.write(key, new IntWritable(minValue)); } }
運行過程
[wukong@bd11 guide]$ hadoop jar pc.jar cn.kissoft.hadoop.week05.TemperatureMR ./ch02/1959.txt ./ch02/out/ Warning: $HADOOP_HOME is deprecated. 14/08/15 16:29:32 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same. 14/08/15 16:29:32 INFO input.FileInputFormat: Total input paths to process : 1 14/08/15 16:29:32 INFO util.NativeCodeLoader: Loaded the native-hadoop library 14/08/15 16:29:32 WARN snappy.LoadSnappy: Snappy native library not loaded 14/08/15 16:29:34 INFO mapred.JobClient: Running job: job_201408151617_0003 14/08/15 16:29:35 INFO mapred.JobClient: map 0% reduce 0% 14/08/15 16:29:47 INFO mapred.JobClient: map 100% reduce 0% 14/08/15 16:30:00 INFO mapred.JobClient: map 100% reduce 100% 14/08/15 16:30:04 INFO mapred.JobClient: Job complete: job_201408151617_0003 14/08/15 16:30:04 INFO mapred.JobClient: Counters: 29 14/08/15 16:30:04 INFO mapred.JobClient: Job Counters 14/08/15 16:30:04 INFO mapred.JobClient: Launched reduce tasks=1 14/08/15 16:30:04 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=14989 14/08/15 16:30:04 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0 14/08/15 16:30:04 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0 14/08/15 16:30:04 INFO mapred.JobClient: Launched map tasks=1 14/08/15 16:30:04 INFO mapred.JobClient: Data-local map tasks=1 14/08/15 16:30:04 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=12825 14/08/15 16:30:04 INFO mapred.JobClient: File Output Format Counters 14/08/15 16:30:04 INFO mapred.JobClient: Bytes Written=19 14/08/15 16:30:04 INFO mapred.JobClient: FileSystemCounters 14/08/15 16:30:04 INFO mapred.JobClient: FILE_BYTES_READ=9180486 14/08/15 16:30:04 INFO mapred.JobClient: HDFS_BYTES_READ=27544475 14/08/15 16:30:04 INFO mapred.JobClient: FILE_BYTES_WRITTEN=13886908 14/08/15 16:30:04 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=19 14/08/15 16:30:04 INFO mapred.JobClient: File Input Format Counters 14/08/15 16:30:04 INFO mapred.JobClient: Bytes Read=27544368 14/08/15 16:30:04 INFO mapred.JobClient: Map-Reduce Framework 14/08/15 16:30:04 INFO mapred.JobClient: Map output materialized bytes=4590240 14/08/15 16:30:04 INFO mapred.JobClient: Map input records=444264 14/08/15 16:30:04 INFO mapred.JobClient: Reduce shuffle bytes=4590240 14/08/15 16:30:04 INFO mapred.JobClient: Spilled Records=1251882 14/08/15 16:30:04 INFO mapred.JobClient: Map output bytes=3755646 14/08/15 16:30:04 INFO mapred.JobClient: Total committed heap usage (bytes)=218865664 14/08/15 16:30:04 INFO mapred.JobClient: CPU time spent (ms)=6280 14/08/15 16:30:04 INFO mapred.JobClient: Combine input records=0 14/08/15 16:30:04 INFO mapred.JobClient: SPLIT_RAW_BYTES=107 14/08/15 16:30:04 INFO mapred.JobClient: Reduce input records=417294 14/08/15 16:30:04 INFO mapred.JobClient: Reduce input groups=1 14/08/15 16:30:04 INFO mapred.JobClient: Combine output records=0 14/08/15 16:30:04 INFO mapred.JobClient: Physical memory (bytes) snapshot=322985984 14/08/15 16:30:04 INFO mapred.JobClient: Reduce output records=2 14/08/15 16:30:04 INFO mapred.JobClient: Virtual memory (bytes) snapshot=1455579136 14/08/15 16:30:04 INFO mapred.JobClient: Map output records=417294
運行結果
[wukong@bd11 guide]$ hadoop fs -cat ./ch02/out/part-r-00000
Warning: $HADOOP_HOME is deprecated. 1959 418 1959 -400
截圖
到此,關于“MapReduce怎么實現氣象站計算最低或最高溫度”的學習就結束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學習,快去試試吧!若想繼續學習更多相關知識,請繼續關注億速云網站,小編會繼續努力為大家帶來更多實用的文章!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。