您好,登錄后才能下訂單哦!
本篇內容主要講解“Rust中多線程的使用方法”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“Rust中多線程的使用方法”吧!
Rust對并發編程提供了非常豐富的支持,有傳統的多線程方式,也提供流行的異步原語async, await,本篇文章主要介紹多線程方面的基本用法。以下將分為5部分進行講解
線程的創建
鎖
原子變量
管道 , 條件變量
生產者消費者的實現
線程的創建非常的簡單
let thread = std::thread::spawn(||{ println!("hello world"); }); thread.join(); //等待線程結束
Rust語言和其他語言不一樣的地方是,如果線程里使用了外部變量,則會報錯
let data = String::from("hello world"); let thread = std::thread::spawn(||{ println!("{}", data); }); thread.join(); 原因如下: error[E0373]: closure may outlive the current function, but it borrows `data`, which is owned by the current function --> src\main.rs:36:37 | 36 | let thread = std::thread::spawn(||{ | ^^ may outlive borrowed value `data` 37 | println!("{}", data); | ---- `data` is borrowed here
線程中使用了其他線程的變量是不合法的,必須使用move表明線程擁有data的所有權
let data = String::from("hello world"); let thread = std::thread::spawn(move ||{ //使用move 把data的所有權轉到線程內 println!("{}", data); }); thread.join();
如果想要在多線程間讀寫數據,通常需要加鎖,如java中的 synchornized。與之對應,在Rust中需要使用Mutex,由于Mutex是跨線程使用,線程會轉移Mutex的所有權,所以必須配合Arc使用。
fn main() { let counter = Arc::new(Mutex::new(0)); let counter2 = counter.clone(); let thread = std::thread::spawn(move ||{ let mut i = counter2.lock().unwrap();//獲取鎖,不需要手動釋放,rust的鎖和變量的生命周期一樣,離開作用域時,鎖會自動釋放 *i = *i + 1; }); thread.join(); let counter = counter.lock().unwrap(); assert_eq!(1, *counter); }
上面的例子中,我們使用鎖來實現對數據的安全訪問,鎖作用的范圍是調用lock到鎖對象的scope結束,在這段范圍內的代碼同一時間只能被一個線程訪問,從這點來看,使用鎖來實現對單一數據的安全訪問就有點重了(當然從鎖和原子變量的實現機制來說,鎖也遠比原子變量重),這時候使用原子變量效率就會高很多。
fn main() { let counter = Arc::new(AtomicU32::new(0)); let counter2 = counter.clone(); let thread = std::thread::spawn(move ||{ counter2.fetch_add( 1, Ordering::SeqCst); }); counter.fetch_add( 1, Ordering::SeqCst); thread.join(); counter.load(Ordering::SeqCst); assert_eq!(2, counter.load(Ordering::SeqCst)); }
線程間的通信、協作,需要有一定的機制來支持,管道和條件變量就是這樣的機制。
管道(Channel) Rust的channle包含了2個概念,發送者和接收者。發送者可以將消息放入管道,接收者則從管道中讀取消息
fn main() { use std::sync::mpsc::channel; use std::thread; let (sender, receiver) = channel(); let sender2 = sender.clone(); thread::spawn(move|| { sender2.send(123).unwrap(); //線程1 發送消息 }); thread::spawn(move|| { sender.send(456).unwrap(); //線程2 發送消息 }); while let Ok(res) = receiver.recv() { //主線程 接收消息 println!("{:?}", res); } }
值得注意的是接收者(receiver), 是唯一的,不像發送者(sender)那樣可以有多個
條件變量 條件變量Condvar,不能單獨使用,需要和監視器MutexGuard配合使用。 線程之間通過調用 condvar.wait, condvar.notify_all, condvar.notify_one來實現線程間通信。
fn println(msg: &str){ use chrono::Local; let date = Local::now(); println!("{} {}", date.format("%Y-%m-%d %H:%M:%S"), msg) } fn main() { use std::sync::{Arc, Mutex, Condvar}; use std::thread; let mutex_condva = Arc::new((Mutex::new(false), Condvar::new())); let m_c = mutex_condva.clone(); thread::spawn(move || { println("sub thread start.."); let (lock, cvar) = &*m_c; let mut started = lock.lock().unwrap(); *started = true; //將業務參數設置為true std::thread::sleep(Duration::from_secs(5)); cvar.notify_all(); // 喚醒條件變量等待者 println("sub thread finished.."); }); println("main thread start.."); let (lock, cvar) = &*mutex_condva; let mut started = lock.lock().unwrap(); println("main thread begin wait.."); while !*started { //等待條件變量被喚醒,且等待關注的業務參數為真。這里需要注意,要在循環中判斷started,因為條件變量被喚醒時,有可能業務條件并未為true started = cvar.wait(started).unwrap(); } println("main thread finished.."); }
下面的例子使用條件變量Condar來實現多生產者 ,多消費者(使用管道比較容易實現,且只能由一個消費者,這里就不介紹了)
struct Queue<T>{ inner:Vec<T>, capacity: usize } impl<T> Queue<T> { fn new(cap:usize) -> Queue<T> { Queue{ inner: Vec::new(), capacity: cap } } fn push(&mut self, data:T) -> bool { if !self.is_full() { self.inner.push(data); true } else { false } } fn pop(&mut self) -> Option<T> { self.inner.pop() } fn is_empty(&self) -> bool { self.inner.is_empty() } fn is_full(&self) -> bool { if self.inner.len() == self.capacity {true} else {false} } } struct Producer<T>{ inner:Arc<(Mutex<Queue<T>>, Condvar)> } impl<T:Display> Producer<T> { fn new(inner:Arc<(Mutex<Queue<T>>, Condvar)>) -> Producer<T> { Producer{inner} } fn produce(&self, data:T) { let mut queue = self.inner.0.lock().unwrap(); while (*queue).is_full() { println("[Producer] Queue is full, waiting queue to not full"); queue = self.inner.1.wait(queue).unwrap(); println("[Producer22] Queue is full, waiting queue to not full"); } println("[Producer] Queue is not full, push data to queue"); queue.push(data); self.inner.1.notify_all(); } } struct Consumer<T>{ inner: Arc<(Mutex<Queue<T>>, Condvar)> } impl<T:Display> Consumer<T> { fn new(inner:Arc<(Mutex<Queue<T>>, Condvar)>) -> Consumer<T> { Consumer{inner} } fn consume(&self) -> Option<T> { let mut queue = self.inner.0.lock().unwrap(); while (*queue).is_empty() { println("[Consumer] Queue is empty, waiting queue to have data"); queue = self.inner.1.wait(queue).unwrap(); } println("[Consumer] Queue has data, pop data"); let data = queue.pop(); self.inner.1.notify_all(); data } } fn println(msg: &str){ use chrono::Local; let date = Local::now(); println!("{:?} {} {}", std::thread::current().id(), date.format("%Y-%m-%d %H:%M:%S"), msg) } fn main() { let mc = Arc::new((Mutex::new(Queue::<usize>::new(3)), Condvar::new())); produce(&mc); consume(&mc); std::thread::sleep(Duration::from_secs(1000));//主線程等待,不然程序會提早退出 } fn produce(mc: &Arc<(Mutex<Queue<usize>>, Condvar)>){ for i in 0 .. 10 { let mc_clone = mc.clone(); std::thread::spawn(move || { std::thread::sleep(Duration::from_secs(random::<u64>() % 10)); let producer = Producer::new(mc_clone); producer.produce(i); }); } } fn consume(mc: &Arc<(Mutex<Queue<usize>>, Condvar)>){ for i in 0 .. 2 { let mc_clone = mc.clone(); std::thread::spawn(move || { std::thread::sleep(Duration::from_secs(random::<u64>() % 2)); let consumer = Consumer::new(mc_clone); loop { consumer.consume(); } }); } }
到此,相信大家對“Rust中多線程的使用方法”有了更深的了解,不妨來實際操作一番吧!這里是億速云網站,更多相關內容可以進入相關頻道進行查詢,關注我們,繼續學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。