您好,登錄后才能下訂單哦!
這篇文章主要介紹“聲紋識別kaldi callhome diarization怎么實現”,在日常操作中,相信很多人在聲紋識別kaldi callhome diarization怎么實現問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”聲紋識別kaldi callhome diarization怎么實現”的疑惑有所幫助!接下來,請跟著小編一起來學習吧!
callhome diarization kaldi 中專門用來進行混合錄音文件聚類分別的
學會自己看kaldi中的 指令demo。
個人操作如下:
teps/segmentation/detect_speech_activity.sh --cmd 'run.pl' --nj 1 --mfcc-config ./conf/mfcc_hires.conf --extra-left-context 79 --extra-right-context 21 --extra-left-context-initial 0 --extra-right-context-final 0 --frames-per-chunk 150 data/ljj exp/segmentation_1a/tdnn_stats_asr_sad_1a exp/mfcc_hires exp/segmentation_sad_snr/nnet_tdnn_j_ljj data/ljj steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 1 --cmd "run.pl" --write-utt2num-frames true data/ljj_seg exp/make_mfcc mfcc utils/fix_data_dir.sh data/ljj_seg # 倒譜均值方差歸一化(CMVN) local/nnet3/xvector/prepare_feats.sh --nj 1 --cmd "run.pl" data/ljj_seg data/ljj_seg_cmn exp/ljj_seg_cmn cp data/ljj_seg/segments data/ljj_seg_cmn/ utils/fix_data_dir.sh data/ljj_seg_cmn diarization/nnet3/xvector/extract_xvectors.sh --cmd "run.pl" --nj 1 --window 1.5 --period 0.75 --apply-cmn false --min-segment 0.5 exp/xvector_nnet_1a data/ljj_seg_cmn exp/xvectors_ljj_seg diarization/nnet3/xvector/score_plda.sh --cmd "run.pl --mem 4G" --nj 1 --target-energy 0.9 exp/xvector_nnet_1a/xvectors_callhome1 exp/xvectors_ljj_seg exp/xvectors_ljj_seg/plda_scores diarization/cluster.sh --cmd "run.pl --mem 4G" --nj 1 --reco2num-spk data/ljj_seg/reco2num_spk exp/xvectors_ljj_seg/plda_scores exp/xvectors_ljj_seg/plda_scores_num_speakers # 如果知道有多少人說話 則需要生成 --reco2num-spk data/ljj_seg/reco2num_spk diarization/cluster.sh --cmd "run.pl --mem 4G" --nj 1 --threshold 0 exp/xvectors_ljj_seg/plda_scores exp/xvectors_ljj_seg/plda_scores_threshold_0 第二列是文件名,第三列是開始時間,第四列是移動時間 第五列是 從移動時間開始 多少時間算一份 第八列是文件的label 如下是 已知文件有幾個人說話的時候 SPEAKER 18642259056-liujinjie.wav 0 0.000 4.510 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 4.530 1.660 <NA> <NA> 2 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 6.210 4.880 <NA> <NA> 2 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 11.090 1.660 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 12.800 2.130 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 14.950 4.400 <NA> <NA> 2 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 19.390 1.810 <NA> <NA> 2 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 21.220 5.220 <NA> <NA> 2 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 26.440 4.410 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 30.850 2.480 <NA> <NA> 2 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 33.340 5.120 <NA> <NA> 2 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 38.460 5.990 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 44.480 3.910 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 48.460 3.460 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 52.060 5.420 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 57.530 5.030 <NA> <NA> 1 <NA> <NA> 如下是 不知文件有幾個人說話的時候 SPEAKER 18642259056-liujinjie.wav 0 0.000 4.510 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 4.530 1.660 <NA> <NA> 3 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 6.210 4.880 <NA> <NA> 2 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 11.090 1.660 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 12.800 2.130 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 14.950 4.400 <NA> <NA> 2 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 19.390 1.810 <NA> <NA> 2 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 21.220 5.220 <NA> <NA> 2 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 26.440 4.410 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 30.850 2.480 <NA> <NA> 2 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 33.340 5.120 <NA> <NA> 2 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 38.460 5.990 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 44.480 3.910 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 48.460 3.460 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 52.060 5.420 <NA> <NA> 1 <NA> <NA> SPEAKER 18642259056-liujinjie.wav 0 57.530 5.030 <NA> <NA> 1 <NA> <NA> 接下來就是 用pydub 進行語音片段的拼接了
到此,關于“聲紋識別kaldi callhome diarization怎么實現”的學習就結束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學習,快去試試吧!若想繼續學習更多相關知識,請繼續關注億速云網站,小編會繼續努力為大家帶來更多實用的文章!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。