您好,登錄后才能下訂單哦!
今天就跟大家聊聊有關Pytorch中Softmax和LogSoftmax如何使用,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結了以下內容,希望大家根據這篇文章可以有所收獲。
一、函數解釋
1.Softmax函數常用的用法是指定參數dim就可以:
(1)dim=0:對每一列的所有元素進行softmax運算,并使得每一列所有元素和為1。
(2)dim=1:對每一行的所有元素進行softmax運算,并使得每一行所有元素和為1。
class Softmax(Module): r"""Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0,1] and sum to 1. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input Returns: a Tensor of the same dimension and shape as the input with values in the range [0, 1] Arguments: dim (int): A dimension along which Softmax will be computed (so every slice along dim will sum to 1). .. note:: This module doesn't work directly with NLLLoss, which expects the Log to be computed between the Softmax and itself. Use `LogSoftmax` instead (it's faster and has better numerical properties). Examples:: >>> m = nn.Softmax(dim=1) >>> input = torch.randn(2, 3) >>> output = m(input) """ __constants__ = ['dim'] def __init__(self, dim=None): super(Softmax, self).__init__() self.dim = dim def __setstate__(self, state): self.__dict__.update(state) if not hasattr(self, 'dim'): self.dim = None def forward(self, input): return F.softmax(input, self.dim, _stacklevel=5) def extra_repr(self): return 'dim={dim}'.format(dim=self.dim)
2.LogSoftmax其實就是對softmax的結果進行log,即Log(Softmax(x))
class LogSoftmax(Module): r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional input Tensor. The LogSoftmax formulation can be simplified as: .. math:: \text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right) Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input Arguments: dim (int): A dimension along which LogSoftmax will be computed. Returns: a Tensor of the same dimension and shape as the input with values in the range [-inf, 0) Examples:: >>> m = nn.LogSoftmax() >>> input = torch.randn(2, 3) >>> output = m(input) """ __constants__ = ['dim'] def __init__(self, dim=None): super(LogSoftmax, self).__init__() self.dim = dim def __setstate__(self, state): self.__dict__.update(state) if not hasattr(self, 'dim'): self.dim = None def forward(self, input): return F.log_softmax(input, self.dim, _stacklevel=5)
輸入代碼
import torch import torch.nn as nn import numpy as np batch_size = 4 class_num = 6 inputs = torch.randn(batch_size, class_num) for i in range(batch_size): for j in range(class_num): inputs[i][j] = (i + 1) * (j + 1) print("inputs:", inputs)
得到大小batch_size為4,類別數為6的向量(可以理解為經過最后一層得到)
tensor([[ 1., 2., 3., 4., 5., 6.],
[ 2., 4., 6., 8., 10., 12.],
[ 3., 6., 9., 12., 15., 18.],
[ 4., 8., 12., 16., 20., 24.]])
接著我們對該向量每一行進行Softmax
Softmax = nn.Softmax(dim=1) probs = Softmax(inputs) print("probs:\n", probs)
得到
tensor([[4.2698e-03, 1.1606e-02, 3.1550e-02, 8.5761e-02, 2.3312e-01, 6.3369e-01],
[3.9256e-05, 2.9006e-04, 2.1433e-03, 1.5837e-02, 1.1702e-01, 8.6467e-01],
[2.9067e-07, 5.8383e-06, 1.1727e-04, 2.3553e-03, 4.7308e-02, 9.5021e-01],
[2.0234e-09, 1.1047e-07, 6.0317e-06, 3.2932e-04, 1.7980e-02, 9.8168e-01]])
此外,我們對該向量每一行進行LogSoftmax
LogSoftmax = nn.LogSoftmax(dim=1) log_probs = LogSoftmax(inputs) print("log_probs:\n", log_probs)
得到
tensor([[-5.4562e+00, -4.4562e+00, -3.4562e+00, -2.4562e+00, -1.4562e+00, -4.5619e-01],
[-1.0145e+01, -8.1454e+00, -6.1454e+00, -4.1454e+00, -2.1454e+00, -1.4541e-01],
[-1.5051e+01, -1.2051e+01, -9.0511e+00, -6.0511e+00, -3.0511e+00, -5.1069e-02],
[-2.0018e+01, -1.6018e+01, -1.2018e+01, -8.0185e+00, -4.0185e+00, -1.8485e-02]])
驗證每一行元素和是否為1
# probs_sum in dim=1 probs_sum = [0 for i in range(batch_size)] for i in range(batch_size): for j in range(class_num): probs_sum[i] += probs[i][j] print(i, "row probs sum:", probs_sum[i])
得到每一行的和,看到確實為1
0 row probs sum: tensor(1.)
1 row probs sum: tensor(1.0000)
2 row probs sum: tensor(1.)
3 row probs sum: tensor(1.)
驗證LogSoftmax是對Softmax的結果進行Log
# to numpy np_probs = probs.data.numpy() print("numpy probs:\n", np_probs) # np.log() log_np_probs = np.log(np_probs) print("log numpy probs:\n", log_np_probs)
得到
numpy probs:
[[4.26977826e-03 1.16064614e-02 3.15496325e-02 8.57607946e-02 2.33122006e-01 6.33691311e-01]
[3.92559559e-05 2.90064461e-04 2.14330270e-03 1.58369839e-02 1.17020354e-01 8.64669979e-01]
[2.90672347e-07 5.83831024e-06 1.17265590e-04 2.35534250e-03 4.73083146e-02 9.50212955e-01]
[2.02340233e-09 1.10474026e-07 6.03167746e-06 3.29318427e-04 1.79801770e-02 9.81684387e-01]]
log numpy probs:
[[-5.4561934e+00 -4.4561934e+00 -3.4561934e+00 -2.4561932e+00 -1.4561933e+00 -4.5619333e-01]
[-1.0145408e+01 -8.1454077e+00 -6.1454072e+00 -4.1454072e+00 -2.1454074e+00 -1.4540738e-01]
[-1.5051069e+01 -1.2051069e+01 -9.0510693e+00 -6.0510693e+00 -3.0510693e+00 -5.1069155e-02]
[-2.0018486e+01 -1.6018486e+01 -1.2018485e+01 -8.0184851e+00 -4.0184855e+00 -1.8485421e-02]]
驗證完畢
import torch import torch.nn as nn import numpy as np batch_size = 4 class_num = 6 inputs = torch.randn(batch_size, class_num) for i in range(batch_size): for j in range(class_num): inputs[i][j] = (i + 1) * (j + 1) print("inputs:", inputs) Softmax = nn.Softmax(dim=1) probs = Softmax(inputs) print("probs:\n", probs) LogSoftmax = nn.LogSoftmax(dim=1) log_probs = LogSoftmax(inputs) print("log_probs:\n", log_probs) # probs_sum in dim=1 probs_sum = [0 for i in range(batch_size)] for i in range(batch_size): for j in range(class_num): probs_sum[i] += probs[i][j] print(i, "row probs sum:", probs_sum[i]) # to numpy np_probs = probs.data.numpy() print("numpy probs:\n", np_probs) # np.log() log_np_probs = np.log(np_probs) print("log numpy probs:\n", log_np_probs)
看完上述內容,你們對Pytorch中Softmax和LogSoftmax如何使用有進一步的了解嗎?如果還想了解更多知識或者相關內容,請關注億速云行業資訊頻道,感謝大家的支持。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。