亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

flinksql如何鏈接kafka

發布時間:2021-07-16 10:04:58 來源:億速云 閱讀:327 作者:chen 欄目:大數據

這篇文章主要介紹“flinksql如何鏈接kafka”,在日常操作中,相信很多人在flinksql如何鏈接kafka問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”flinksql如何鏈接kafka”的疑惑有所幫助!接下來,請跟著小編一起來學習吧!

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>flinksqldemo</artifactId>
    <version>1.0-SNAPSHOT</version>


    <properties>
        <!-- Encoding -->
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

        <scala.binary.version>2.11</scala.binary.version>
        <scala.version>2.11.8</scala.version>
        <kafka.version>0.10.2.1</kafka.version>
        <flink.version>1.12.0</flink.version>
        <hadoop.version>2.7.3</hadoop.version>

        <!-- scope 本地調試時注銷 設定為默認的 compile 打包時設定為 provided -->
        <setting.scope>compile</setting.scope>
    </properties>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>8</source>
                    <target>8</target>
                </configuration>
            </plugin>
        </plugins>
    </build>



    <dependencies>
        <!--flink start-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner-blink_2.11</artifactId>
            <version>1.12.0</version>

        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.11</artifactId>
            <version>${flink.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.11</artifactId>
            <version>${flink.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>


        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.11</artifactId>
            <version>1.12.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-csv</artifactId>
            <version>1.12.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>

        <!--<dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-statebackend-rocksdb_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>-->
        <!-- flink end-->

        <!-- kafka start -->
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka_${scala.binary.version}</artifactId>
            <version>${kafka.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>
        <!-- kafka end-->

        <!-- hadoop start -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>
        <!-- hadoop end -->

        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-api</artifactId>
            <version>1.7.25</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.72</version>
        </dependency>
        <dependency>
            <groupId>redis.clients</groupId>
            <artifactId>jedis</artifactId>
            <version>2.7.3</version>
        </dependency>
        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>29.0-jre</version>
        </dependency>

    </dependencies>

</project>

代碼:

package com.jd.data;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.descriptors.Csv;
import org.apache.flink.table.descriptors.Kafka;
import org.apache.flink.table.descriptors.Schema;
import org.apache.flink.types.Row;

public class TableApiConnectKafka04 {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);


//        1、創建表執行環節
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);

          tableEnv.connect(new Kafka()
                .version("0.11") // 定義版本
                .topic("xxx") // 定義主題
                .property("zookeeper.connect", "localhost:2181")
                .property("bootstrap.servers", "localhost:9092")
        ).withFormat(new Csv()).withSchema(new Schema().field("a", DataTypes.STRING())  // 定義表的結構
                  .field("b", DataTypes.STRING())
                  .field("c", DataTypes.STRING())

          )
                  .inAppendMode()
                  .createTemporaryTable("xxx");

        Table xxx = tableEnv.from("xxx");

        xxx.printSchema();

        tableEnv.toAppendStream(xxx,  Row.class ).print();

        env.execute("job");
    }
}

到此,關于“flinksql如何鏈接kafka”的學習就結束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學習,快去試試吧!若想繼續學習更多相關知識,請繼續關注億速云網站,小編會繼續努力為大家帶來更多實用的文章!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

安溪县| 即墨市| 昌宁县| 元阳县| 张家川| 溧水县| 惠水县| 丹寨县| 渝中区| 彭州市| 宜兴市| 左权县| 大荔县| 舞阳县| 临汾市| 新津县| 徐水县| 阳谷县| 南皮县| 鄂州市| 临夏市| 新宾| 吉水县| 桐乡市| 丹巴县| 精河县| 固镇县| 垣曲县| 潜山县| 承德市| 静安区| 鞍山市| 麟游县| 临桂县| 阳山县| 句容市| 柏乡县| 乌鲁木齐市| 五大连池市| 建湖县| 达州市|